Comptes Rendus
Intervention en colloque
Simulating quantum Hall physics in ultracold atomic gases: prospects and challenges
[Simuler l’effet Hall quantique dans les gaz d’atomes ultrafroids : perspectives et défis]
Comptes Rendus. Physique, Volume 26 (2025), pp. 317-338.

Cet article fait partie du numéro thématique Questions ouvertes dans le problème quantique à N corps coordonné par Yvan Castin et al..

Cet acte de congrès présente les avancées récentes dans la réalisation d’états topologiques de la matière à l’aide de gaz atomiques ultrafroids. Nous nous concentrons sur la simulation de l’effet Hall quantique, découvert dans des gaz d’électrons bidimensionnels soumis à un champ magnétique. Étant donné que les atomes ultrafroids sont neutres, la simulation de l’effet d’un champ magnétique nécessite une technique ad hoc. Nous passons en revue diverses méthodes développées à cette fin, en soulignant leurs avantages et leurs limites respectifs. En outre, nous explorons l’extension de ces techniques aux gaz quantiques en interaction dans des bandes topologiques, dans le but de créer des analogues d’états de Hall fractionnaires. Ces états à N corps se distinguent par leur ordre topologique, qui se caractérise par une intrication à longue portée entre les particules et l’émergence d’excitations de basse énergie présentant des statistiques quantiques fractionnaires. La discussion portera sur l’état actuel de la recherche et sur les orientations futures potentielles dans ce domaine.

This proceedings presents recent advancements in the realization of topological states of matter using ultracold atomic gases. We focus on the simulation of the quantum Hall effect, originally discovered in two-dimensional electron gases subjected to a magnetic field. Given that ultracold atoms are neutral, simulating the effect of a magnetic field requires an ad-hoc technique. We review various methods developed for this purpose, highlighting their respective advantages and limitations. Furthermore, we explore the extension of these techniques to interacting quantum gases within topological bands, aiming to create analogs of fractional quantum Hall states. These many-body states are distinguished by their topological order, which is characterized by long-range entanglement among particles and the emergence of low-lying excitations exhibiting fractional quantum statistics. The discussion will encompass the current state of research and potential future directions in the field.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.243
Keywords: Topological phase, Quantum simulation, Quantum gases
Mots-clés : Phase topologique, Simulation quantique, Gaz quantiques

Sylvain Nascimbene 1

1 Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_317_0,
     author = {Sylvain Nascimbene},
     title = {Simulating quantum {Hall} physics in ultracold atomic gases: prospects and challenges},
     journal = {Comptes Rendus. Physique},
     pages = {317--338},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.243},
     language = {en},
}
TY  - JOUR
AU  - Sylvain Nascimbene
TI  - Simulating quantum Hall physics in ultracold atomic gases: prospects and challenges
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 317
EP  - 338
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.243
LA  - en
ID  - CRPHYS_2025__26_G1_317_0
ER  - 
%0 Journal Article
%A Sylvain Nascimbene
%T Simulating quantum Hall physics in ultracold atomic gases: prospects and challenges
%J Comptes Rendus. Physique
%D 2025
%P 317-338
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.243
%G en
%F CRPHYS_2025__26_G1_317_0
Sylvain Nascimbene. Simulating quantum Hall physics in ultracold atomic gases: prospects and challenges. Comptes Rendus. Physique, Volume 26 (2025), pp. 317-338. doi : 10.5802/crphys.243. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.243/

[1] K. v. Klitzing; G. Dorda; M. Pepper New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., Volume 45 (1980), pp. 494-497 | DOI

[2] L. D. Landau; E. M. Lifshitz Course of Theoretical Physics Vol 3 Quantum Mechanics, Pergamon Press, London, 1958

[3] B. I. Halperin Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B, Volume 25 (1982), pp. 2185-2190 | DOI

[4] Y. Castin; Z. Hadzibabic; S. Stock; J. Dalibard; S. Stringari Quantized vortices in the ideal Bose gas: a physical realization of random polynomials, Phys. Rev. Lett., Volume 96 (2006), 040405 | DOI

[5] R. B. Laughlin Quantized Hall conductivity in two dimensions, Phys. Rev. B, Volume 23 (1981), pp. 5632-5633 | DOI

[6] O. M. Corbino Azioni Elettromagnetiche Doyute Agli Ioni dei Metalli Deviati Dalla Traiettoria Normale per Effetto di un Campo, Nuovo Cimento, Volume 1 (1911), pp. 397-420 | DOI

[7] P. G. Harper Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. A, Volume 68 (1955), pp. 874-878 | DOI | Zbl

[8] D. R. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B, Volume 14 (1976), pp. 2239-2249 | DOI

[9] N. R. Cooper; J. Dalibard; I. B. Spielman Topological bands for ultracold atoms, Rev. Mod. Phys., Volume 91 (2019), 015005 | DOI

[10] F. D. M. Haldane Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “Parity Anomaly”, Phys. Rev. Lett., Volume 61 (1988), pp. 2015-2018 | DOI

[11] K. W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000), pp. 806-809 | DOI

[12] K. W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortices in a stirred Bose–Einstein condensate, J. Mod. Opt., Volume 47 (2000), pp. 2715-2723 | DOI

[13] A. A. Abrikosov On the magnetic properties of superconductors of the second group, Sov. Phys. - JETP, Volume 5 (1957), pp. 1174-1182

[14] W. H. Kleiner; L. M. Roth; S. H. Autler Bulk solution of Ginzburg–Landau equations for type II superconductors: upper critical field region, Phys. Rev., Volume 133 (1964), p. A1226-A1227 | DOI | Zbl

[15] J. R. Abo-Shaeer; C. Raman; J. M. Vogels; W. Ketterle Observation of vortex lattices in Bose–Einstein condensates, Science, Volume 292 (2001), pp. 476-479 | DOI

[16] V. Bretin; S. Stock; Y. Seurin; J. Dalibard Fast rotation of a Bose–Einstein condensate, Phys. Rev. Lett., Volume 92 (2004), 050403 | DOI

[17] V. Schweikhard; I. Coddington; P. Engels; V. P. Mogendorff; E. A. Cornell Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett., Volume 92 (2004), 040404 | DOI

[18] R. J. Fletcher; A. Shaffer; C. C. Wilson; P. B. Patel; Z. Yan; V. Crépel; B. Mukherjee; M. W. Zwierlein Geometric squeezing into the lowest Landau level, Science, Volume 372 (2021), pp. 1318-1322 | DOI | Zbl

[19] R. Yao; S. Chi; B. Mukherjee; A. Shaffer; M. Zwierlein; R. J. Fletcher Observation of chiral edge transport in a rapidly-Rotating quantum gas, Nat. Phys., Volume 20 (2024), pp. 1726-1731 | DOI

[20] B. Mukherjee; A. Shaffer; P. B. Patel; Z. Yan; C. C. Wilson; V. Crépel; R. J. Fletcher; M. Zwierlein Crystallization of bosonic quantum Hall states in a rotating quantum gas, Nature, Volume 601 (2022), pp. 58-62 | DOI

[21] C. Gross; I. Bloch Quantum simulations with ultracold atoms in optical lattices, Science, Volume 357 (2017), pp. 995-1001 | DOI

[22] D. Jaksch; P. Zoller Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms, New J. Phys., Volume 5 (2003), 56 | DOI

[23] M. Aidelsburger; M. Atala; M. Lohse; J. T. Barreiro; B. Paredes; I. Bloch Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett., Volume 111 (2013), 185301 | DOI

[24] M. Aidelsburger; M. Lohse; C. Schweizer et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nat. Phys., Volume 11 (2015), pp. 162-166 | DOI

[25] H. Miyake; G. A. Siviloglou; C. J. Kennedy; W. C. Burton; W. Ketterle Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett., Volume 111 (2013), 185302 | DOI

[26] G. Jotzu; M. Messer; R. Desbuquois; M. Lebrat; T. Uehlinger; D. Greif; T. Esslinger Experimental realization of the topological Haldane model with ultracold fermions, Nature, Volume 515 (2014), pp. 237-240 | DOI

[27] M. Holthaus Floquet engineering with quasienergy bands of periodically driven optical lattices, J. Phys. B: At. Mol. Opt. Phys., Volume 49 (2015), 013001 | DOI

[28] A. Eckardt Colloquium: atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys., Volume 89 (2017), 011004 | DOI

[29] M. Weinberg; C. Ölschläger; C. Sträter; S. Prelle; A. Eckardt; K. Sengstock; J. Simonet Multiphoton interband excitations of quantum gases in driven optical lattices, Phys. Rev. A, Volume 92 (2015), 043621 | DOI

[30] M. Reitter; J. Näger; K. Wintersperger; C. Sträter; I. Bloch; A. Eckardt; U. Schneider Interaction dependent heating and atom loss in a periodically driven optical lattice, Phys. Rev. Lett., Volume 119 (2017), 200402 | DOI

[31] T. Boulier; J. Maslek; M. Bukov et al. Parametric heating in a 2D periodically driven bosonic system: beyond the weakly interacting regime, Phys. Rev. X, Volume 9 (2019), 011047 | DOI

[32] K. Wintersperger; M. Bukov; J. Näger et al. Parametric instabilities of interacting bosons in periodically driven 1D optical lattices, Phys. Rev. X, Volume 10 (2020), 011030 | DOI

[33] K. Viebahn; J. Minguzzi; K. Sandholzer; A.-S. Walter; M. Sajnani; F. Görg; T. Esslinger Suppressing dissipation in a Floquet–Hubbard system, Phys. Rev. X, Volume 11 (2021), 011057 | DOI

[34] F. Gerbier; J. Dalibard Gauge fields for ultracold atoms in optical superlattices, New J. Phys., Volume 12 (2010), 033007 | DOI

[35] Y.-J. Lin; R. L. Compton; K. Jiménez-García; J. V. Porto; I. B. Spielman Synthetic magnetic fields for ultracold neutral atoms, Nature, Volume 462 (2009), pp. 628-632 | DOI

[36] O. Boada; A. Celi; J. I. Latorre; M. Lewenstein Quantum simulation of an extra dimension, Phys. Rev. Lett., Volume 108 (2012), 133001 | DOI

[37] A. Celi; P. Massignan; J. Ruseckas; N. Goldman; I. B. Spielman; G. Juzeliūnas; M. Lewenstein Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett., Volume 112 (2014), 043001 | DOI

[38] M. Mancini; G. Pagano; G. Cappellini et al. Observation of Chiral edge states with neutral fermions in synthetic hall ribbons, Science, Volume 349 (2015), pp. 1510-1513 | DOI | Zbl

[39] B. K. Stuhl; H.-I. Lu; L. M. Aycock; D. Genkina; I. B. Spielman Visualizing edge states with an atomic Bose gas in the quantum Hall regime, Science, Volume 349 (2015), pp. 1514-1518 | DOI | Zbl

[40] T. Ozawa; H. M. Price Topological quantum matter in synthetic dimensions, Nat. Rev. Phys., Volume 1 (2019), pp. 349-357 | DOI

[41] A. Fabre; S. Nascimbene Atomic topological quantum matter using synthetic dimensions, Europhys. Lett., Volume 145 (2024), 65001 | DOI

[42] T. Chalopin; T. Satoor; A. Evrard; V. Makhalov; J. Dalibard; R. Lopes; S. Nascimbene Probing Chiral edge dynamics and bulk topology of a synthetic Hall system, Nat. Phys., Volume 16 (2020), pp. 1017-1021 | DOI

[43] J. H. Han; J. H. Kang; Y. Shin Band gap closing in a synthetic Hall tube of neutral fermions, Phys. Rev. Lett., Volume 122 (2019), 065303 | DOI

[44] Y. Yan; S.-L. Zhang; S. Choudhury; Q. Zhou Emergent periodic and quasiperiodic lattices on surfaces of synthetic Hall tori and synthetic Hall cylinders, Phys. Rev. Lett., Volume 123 (2019), 260405 | DOI

[45] X.-W. Luo; J. Zhang; C. Zhang Tunable flux through a synthetic Hall tube of neutral fermions, Phys. Rev. A, Volume 102 (2020), 063327 | DOI

[46] Q.-Y. Liang; D. Trypogeorgos; A. Valdés-Curiel; J. Tao; M. Zhao; I. B. Spielman Coherence and decoherence in the Harper–Hofstadter model, Phys. Rev. Res., Volume 3 (2021), 023058 | DOI

[47] A. Fabre; J.-B. Bouhiron; T. Satoor; R. Lopes; S. Nascimbene Laughlin’s topological charge pump in an atomic Hall cylinder, Phys. Rev. Lett., Volume 128 (2022), 173202 | DOI

[48] M. Lohse; C. Schweizer; H. M. Price; O. Zilberberg; I. Bloch Exploring 4D quantum Hall physics with a 2D topological charge pump, Nature, Volume 553 (2018), pp. 55-58 | DOI

[49] J.-B. Bouhiron; A. Fabre; Q. Liu; Q. Redon; N. Mittal; T. Satoor; R. Lopes; S. Nascimbene Realization of an atomic quantum Hall system in four dimensions, Science, Volume 384 (2024), pp. 223-227 | DOI | Zbl

[50] F. A. An; E. J. Meier; J. Ang’ong’a; B. Gadway Correlated dynamics in a synthetic lattice of momentum states, Phys. Rev. Lett., Volume 120 (2018), 040407 | DOI

[51] B. Sundar; B. Gadway; K. R. A. Hazzard Synthetic dimensions in ultracold polar molecules, Sci. Rep., Volume 8 (2018), 3422 | DOI

[52] F. A. An; B. Sundar; J. Hou; X.-W. Luo; E. J. Meier; C. Zhang; K. R. A. Hazzard; B. Gadway Nonlinear dynamics in a synthetic momentum-state lattice, Phys. Rev. Lett., Volume 127 (2021), 130401 | DOI

[53] T.-W. Zhou; G. Cappellini; D. Tusi et al. Observation of universal Hall response in strongly interacting fermions, Science, Volume 381 (2023), pp. 427-430 | DOI

[54] S. Barbarino; L. Taddia; D. Rossini; L. Mazza; R. Fazio Magnetic crystals and helical liquids in alkaline-earth fermionic gases, Nat. Commun., Volume 6 (2015), pp. 1-9 | DOI

[55] E. Cornfeld; E. Sela Chiral currents in one-dimensional fractional quantum Hall states, Phys. Rev. B, Volume 92 (2015), 115446 | DOI

[56] M. Łącki; H. Pichler; A. Sterdyniak; A. Lyras; V. E. Lembessis; O. Al-Dossary; J. C. Budich; P. Zoller Quantum Hall physics with cold atoms in cylindrical optical lattices, Phys. Rev. A, Volume 93 (2016), 013604 | DOI

[57] S. Barbarino; L. Taddia; D. Rossini; L. Mazza; R. Fazio Synthetic gauge fields in synthetic dimensions: interactions and chiral edge modes, New J. Phys., Volume 18 (2016), 035010 | DOI

[58] T. Bilitewski; N. R. Cooper Synthetic dimensions in the strong-coupling limit: supersolids and pair superfluids, Phys. Rev. A, Volume 94 (2016), 023630 | DOI

[59] J. Jünemann; A. Piga; S.-J. Ran; M. Lewenstein; M. Rizzi; A. Bermudez Exploring interacting topological insulators with ultracold atoms: the synthetic Creutz–Hubbard model, Phys. Rev. X, Volume 7 (2017), 031057 | DOI

[60] M. P. Zaletel; R. S. K. Mong; F. Pollmann Topological characterization of fractional quantum Hall ground states from microscopic Hamiltonians, Phys. Rev. Lett., Volume 110 (2013), 236801 | DOI

[61] J. Motruk; M. P. Zaletel; R. S. K. Mong; F. Pollmann Density matrix renormalization group on a cylinder in mixed real and momentum space, Phys. Rev. B, Volume 93 (2016), 155139 | DOI

[62] J. Motruk; F. Pollmann Phase transitions and adiabatic preparation of a fractional Chern insulator in a Boson cold-atom model, Phys. Rev. B, Volume 96 (2017), 165107 | DOI

[63] M. Gerster; M. Rizzi; P. Silvi; M. Dalmonte; S. Montangero Fractional quantum Hall effect in the interacting hofstadter model via tensor networks, Phys. Rev. B, Volume 96 (2017), 195123 | DOI

[64] E. L. Weerda; M. Rizzi Fractional quantum Hall states with variational projected entangled-pair states: a study of the bosonic Harper–Hofstadter model, Phys. Rev. B, Volume 109 (2024), L241117 | DOI

[65] R. B. Laughlin Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett., Volume 50 (1983), pp. 1395-1398 | DOI

[66] O. Ciftja Monte Carlo study of Bose Laughlin wave function for filling factors 1/2, 1/4 and 1/6, Europhys. Lett., Volume 74 (2006), p. 486 | DOI

[67] P. Streda Theory of quantised Hall conductivity in two dimensions, J. Phys. C: Solid State Phys., Volume 15 (1982), p. L717 | DOI

[68] N. Regnault; T. Jolicoeur Quantum Hall fractions in rotating Bose–Einstein condensates, Phys. Rev. Lett., Volume 91 (2003), 030402 | DOI

[69] J. Léonard; S. Kim; J. Kwan; P. Segura; F. Grusdt; C. Repellin; N. Goldman; M. Greiner Realization of a fractional quantum Hall state with ultracold atoms, Nature, Volume 619 (2023), pp. 495-499 | DOI

[70] P. Lunt; P. Hill; J. Reiter; P. M. Preiss; M. Gaka; S. Jochim Realization of a Laughlin state of two rapidly rotating fermions, Phys. Rev. Lett., Volume 133 (2024), 253401 | DOI

[71] L. W. Clark; N. Schine; C. Baum; N. Jia; J. Simon Observation of Laughlin states made of light, Nature, Volume 582 (2020), pp. 41-45 | DOI

[72] C. Wang; F.-M. Liu; M.-C. Chen et al. Realization of fractional quantum Hall state with interacting photons, Science, Volume 384 (2024), pp. 579-584 | DOI

[73] Y.-C. He; F. Grusdt; A. Kaufman; M. Greiner; A. Vishwanath Realizing and adiabatically preparing bosonic integer and fractional quantum Hall states in optical lattices, Phys. Rev. B, Volume 96 (2017), 201103 | DOI

[74] F. A. Palm; J. Kwan; B. Bakkali-Hassani; M. Greiner; U. Schollwöck; N. Goldman; F. Grusdt Growing extended Laughlin states in a quantum gas microscope: a patchwork construction, Phys. Rev. Res., Volume 6 (2024), 013198 | DOI

[75] M. Popp; B. Paredes; J. I. Cirac Adiabatic path to fractional quantum Hall states of a few bosonic atoms, Phys. Rev. A, Volume 70 (2004), 053612 | DOI

[76] B. Wang; M. Aidelsburger; J. Dalibard; A. Eckardt; N. Goldman Cold-atom elevator: from edge-state injection to the preparation of fractional Chern insulators, Phys. Rev. Lett., Volume 132 (2024), 163402 | DOI

[77] A. Mazurenko; C. S. Chiu; G. Ji et al. A cold-atom Fermi–Hubbard antiferromagnet, Nature, Volume 545 (2017), pp. 462-466 | DOI

[78] S. Diehl; E. Rico; M. A. Baranov; P. Zoller Topology by dissipation in atomic quantum wires, Nat. Phys., Volume 7 (2011), pp. 971-977 | DOI

[79] J. C. Budich; P. Zoller; S. Diehl Dissipative preparation of Chern insulators, Phys. Rev. A, Volume 91 (2015), 042117 | DOI

[80] Z. Liu; E. J. Bergholtz; J. C. Budich Dissipative preparation of fractional Chern insulators, Phys. Rev. Res., Volume 3 (2021), 043119 | DOI

[81] X. G. Wen Topological orders in rigid states, Int. J. Mod. Phys. B, Volume 04 (1990), pp. 239-271 | DOI

[82] J. Eisert; M. Cramer; M. B. Plenio Colloquium: area laws for the entanglement entropy, Rev. Mod. Phys., Volume 82 (2010), pp. 277-306 | DOI

[83] A. Kitaev; J. Preskill Topological entanglement entropy, Phys. Rev. Lett., Volume 96 (2006), 110404 | DOI

[84] A. J. Daley; H. Pichler; J. Schachenmayer; P. Zoller Measuring entanglement growth in quench dynamics of bosons in an optical lattice, Phys. Rev. Lett., Volume 109 (2012), 020505 | DOI

[85] R. Islam; R. Ma; P. M. Preiss; M. Eric Tai; A. Lukin; M. Rispoli; M. Greiner Measuring entanglement entropy in a quantum many-body system, Nature, Volume 528 (2015), pp. 77-83 | DOI

[86] O. S. Zozulya; M. Haque; K. Schoutens; E. H. Rezayi Bipartite entanglement entropy in fractional quantum Hall states, Phys. Rev. B, Volume 76 (2007), 125310 | DOI

[87] M. Haque; O. Zozulya; K. Schoutens Entanglement entropy in fermionic Laughlin states, Phys. Rev. Lett., Volume 98 (2007), 060401 | DOI

[88] A. G. Morris; D. L. Feder Topological entropy of quantum Hall states in rotating Bose gases, Phys. Rev. A, Volume 79 (2009), 013619 | DOI

[89] T. Comparin; A. Opler; E. Macaluso; A. Biella; A. P. Polychronakos; L. Mazza Measurable fractional spin for quantum Hall quasiparticles on the disk, Phys. Rev. B, Volume 105 (2022), 085125 | DOI

[90] B. Wang; X. Dong; A. Eckardt Measurable signatures of bosonic fractional Chern insulator states and their fractional excitations in a quantum-gas microscope, SciPost Phys., Volume 12 (2022), 095 | DOI

[91] E. C. Samson; K. E. Wilson; Z. L. Newman; B. P. Anderson Deterministic creation, pinning, and manipulation of quantized vortices in a Bose–Einstein condensate, Phys. Rev. A, Volume 93 (2016), 023603 | DOI

[92] W. J. Kwon; G. Del Pace; K. Xhani; L. Galantucci; A. Muzi Falconi; M. Inguscio; F. Scazza; G. Roati Sound emission and annihilations in a programmable quantum vortex collider, Nature, Volume 600 (2021), pp. 64-69 | DOI

[93] E. Macaluso; T. Comparin; L. Mazza; I. Carusotto Fusion channels of non-Abelian anyons from angular-momentum and density-profile measurements, Phys. Rev. Lett., Volume 123 (2019), 266801 | DOI

[94] T.-L. Ho; E. J. Mueller Rotating spin-1 Bose clusters, Phys. Rev. Lett., Volume 89 (2002), 050401 | DOI

[95] F. Wilczek Quantum mechanics of fractional-spin particles, Phys. Rev. Lett., Volume 49 (1982), pp. 957-959 | DOI

[96] R. O. Umucalılar Real-space probe for lattice quasiholes, Phys. Rev. A, Volume 98 (2018), 063629 | DOI

[97] B. Paredes; P. Fedichev; J. I. Cirac; P. Zoller 1/2-anyons in small atomic Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001), 010402 | DOI

[98] M. Greiter; X.-G. Wen; F. Wilczek Paired Hall state at half filling, Phys. Rev. Lett., Volume 66 (1991), pp. 3205-3208 | DOI

[99] M. Roncaglia; M. Rizzi; J. I. Cirac Pfaffian state generation by strong three-body dissipation, Phys. Rev. Lett., Volume 104 (2010), 096803 | DOI

[100] F. A. Palm; M. Buser; J. Léonard; M. Aidelsburger; U. Schollwöck; F. Grusdt Bosonic Pfaffian state in the Hofstadter–Bose–Hubbard model, Phys. Rev. B, Volume 103 (2021), L161101 | DOI

[101] G. Moore; N. Read Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B, Volume 360 (1991), pp. 362-396 | DOI

[102] C. Nayak; S. H. Simon; A. Stern; M. Freedman; S. Das Sarma Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys., Volume 80 (2008), pp. 1083-1159 | DOI | Zbl

[103] M. Atala; M. Aidelsburger; J. T. Barreiro; D. Abanin; T. Kitagawa; E. Demler; I. Bloch Direct measurement of the Zak phase in topological bloch bands, Nat. Phys., Volume 9 (2013), pp. 795-800 | DOI

[104] Y.-J. Lin; K. Jiménez-García; I. B. Spielman Spin–orbit-coupled Bose–Einstein condensates, Nature, Volume 471 (2011), pp. 83-86 | DOI

[105] Z.-Y. Wang; X.-C. Cheng; B.-Z. Wang et al. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin–orbit coupling, Science, Volume 372 (2021), pp. 271-276 | DOI

Cité par Sources :

Commentaires - Politique