Comptes Rendus
Article de recherche
Space-time toy model for Hawking radiation
[Modèle-jouet spatio-temporel pour le rayonnement de Hawking]
Comptes Rendus. Physique, Online first (2024), pp. 1-10.

By gluing together two sections of flat space-time in different metric representations (with the Minkowski metric representing the region far away from the black hole and the Rindler metric modeling the vicinity of the horizon), we construct a simplified toy model for black-hole evaporation. The simple structure of this toy model allows us to construct exact analytic solutions for the two-point functions in the various vacuum states (Israel–Hartle–Hawking, Unruh and Boulware states) in an easy way and thus helps to understand and disentangle the different ingredients for Hawking radiation better.

En accolant deux sections de l’espace-temps plat en des représentations métriques différentes (la métrique de Minkowski représentant la région éloignée du trou noir et la métrique de Rindler modélisant le voisinage de l’horizon), nous construisons un modèle simplifié pour l’évaporation des trous noirs. La structure simple de ce modèle nous permet de construire facilement des solutions analytiques exactes pour les fonctions à deux points dans les différents états du vide (états Israel–Hartle–Hawking, Unruh et Boulware) et ainsi de mieux comprendre et démêler les différents ingrédients du rayonnement de Hawking.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.252
Keywords: Black-hole evaporation, Energy–momentum tensor, Trace anomaly
Mots-clés : Évaporation de trous noirs, Tenseur d’impulsion-énergie, Anomalie de trace

Ralf Schützhold 1, 2 ; William George Unruh 3, 4

1 Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
2 Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany
3 Hagler Institute for Advanced Study, Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843-4242, USA
4 Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z1, Canada
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S2_A16_0,
     author = {Ralf Sch\"utzhold and William George Unruh},
     title = {Space-time toy model for {Hawking} radiation},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.252},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Ralf Schützhold
AU  - William George Unruh
TI  - Space-time toy model for Hawking radiation
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.252
LA  - en
ID  - CRPHYS_2024__25_S2_A16_0
ER  - 
%0 Journal Article
%A Ralf Schützhold
%A William George Unruh
%T Space-time toy model for Hawking radiation
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.252
%G en
%F CRPHYS_2024__25_S2_A16_0
Ralf Schützhold; William George Unruh. Space-time toy model for Hawking radiation. Comptes Rendus. Physique, Online first (2024), pp. 1-10. doi : 10.5802/crphys.252.

[1] S. W. Hawking Particle creation by black holes, Commun. Math. Phys., Volume 43 (1975), pp. 199-220 [erratum: Commun. Math. Phys. 46, 206 (1976)] | DOI | MR | Zbl

[2] S. W. Hawking Black hole explosions, Nature, Volume 248 (1974), pp. 30-31 | DOI | Zbl

[3] P. C. W. Davies; S. A. Fulling; W. G. Unruh Energy momentum tensor near an evaporating black hole, Phys. Rev. D, Volume 13 (1976), pp. 2720-2723 | DOI

[4] C. J. Fewster Lectures on quantum energy inequalities | arXiv

[5] L. H. Ford; T. A. Roman Averaged energy conditions and quantum inequalities, Phys. Rev. D, Volume 51 (1995), pp. 4277-4286 | DOI | MR

[6] W. Israel Thermo field dynamics of black holes, Phys. Lett. A, Volume 57 (1976), pp. 107-110 | DOI | MR

[7] J. B. Hartle; S. W. Hawking Path integral derivation of black hole radiance, Phys. Rev. D, Volume 13 (1976), pp. 2188-2203 | DOI

[8] D. G. Boulware Quantum field theory in Schwarzschild and Rindler spaces, Phys. Rev. D, Volume 11 (1975), pp. 1404-1423 | DOI | MR

[9] W. G. Unruh Notes on black hole evaporation, Phys. Rev. D, Volume 14 (1976), pp. 870-892 | DOI

[10] C. Maia; R. Schützhold Quantum toy model for black-hole back-reaction, Phys. Rev. D, Volume 76 (2007), 101502 | DOI | MR

[11] W. G. Unruh Black hole evaporation – 50 years, Gen. Relativ. Gravit., Volume 57 (2025), 78 | DOI | MR

[12] J. Louko Thermality from a Rindler quench, Class. Quant. Grav., Volume 35 (2018) no. 20, 205006 | DOI | MR

[13] J. Rodriguez-Laguna; L. Tarruell; M. Lewenstein; A. Celi Synthetic Unruh effect in cold atoms, Phys. Rev. A, Volume 95 (2017) no. 1, 013627 | DOI

[14] R. Schützhold On the Hawking effect, Phys. Rev. D, Volume 64 (2001), 024029 | DOI | MR

[15] P. C. W. Davies; W. G. Unruh Neutrino stress tensor regularization in two-dimensional space-time, Proc. Roy. Soc. Lond. A, Volume 356 (1977), pp. 259-268 | DOI

[16] B. S. DeWitt The global approach to quantum field theory. Vol. 1, 2, Int. Ser. Monogr. Phys., Volume 114 (2003), pp. 1-1042 | MR | Zbl

[17] S. M. Christensen Regularization, renormalization, and covariant geodesic point separation, Phys. Rev. D, Volume 17 (1978), pp. 946-963 | DOI | MR

[18] R. Ferrero; S. A. Franchino-Viñas; M. B. Fröb; W. C. C. Lima Universal definition of the nonconformal trace anomaly, Phys. Rev. Lett., Volume 132 (2024) no. 7, 071601 | DOI | MR

Cité par Sources :

Commentaires - Politique