[Modèle-jouet spatio-temporel pour le rayonnement de Hawking]
By gluing together two sections of flat space-time in different metric representations (with the Minkowski metric representing the region far away from the black hole and the Rindler metric modeling the vicinity of the horizon), we construct a simplified toy model for black-hole evaporation. The simple structure of this toy model allows us to construct exact analytic solutions for the two-point functions in the various vacuum states (Israel–Hartle–Hawking, Unruh and Boulware states) in an easy way and thus helps to understand and disentangle the different ingredients for Hawking radiation better.
En accolant deux sections de l’espace-temps plat en des représentations métriques différentes (la métrique de Minkowski représentant la région éloignée du trou noir et la métrique de Rindler modélisant le voisinage de l’horizon), nous construisons un modèle simplifié pour l’évaporation des trous noirs. La structure simple de ce modèle nous permet de construire facilement des solutions analytiques exactes pour les fonctions à deux points dans les différents états du vide (états Israel–Hartle–Hawking, Unruh et Boulware) et ainsi de mieux comprendre et démêler les différents ingrédients du rayonnement de Hawking.
Révisé le :
Accepté le :
Première publication :
Mots-clés : Évaporation de trous noirs, Tenseur d’impulsion-énergie, Anomalie de trace
Ralf Schützhold 1, 2 ; William George Unruh 3, 4

@article{CRPHYS_2024__25_S2_A16_0, author = {Ralf Sch\"utzhold and William George Unruh}, title = {Space-time toy model for {Hawking} radiation}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.252}, language = {en}, note = {Online first}, }
Ralf Schützhold; William George Unruh. Space-time toy model for Hawking radiation. Comptes Rendus. Physique, Online first (2024), pp. 1-10. doi : 10.5802/crphys.252.
[1] Particle creation by black holes, Commun. Math. Phys., Volume 43 (1975), pp. 199-220 [erratum: Commun. Math. Phys. 46, 206 (1976)] | DOI | MR | Zbl
[2] Black hole explosions, Nature, Volume 248 (1974), pp. 30-31 | DOI | Zbl
[3] Energy momentum tensor near an evaporating black hole, Phys. Rev. D, Volume 13 (1976), pp. 2720-2723 | DOI
[4] Lectures on quantum energy inequalities | arXiv
[5] Averaged energy conditions and quantum inequalities, Phys. Rev. D, Volume 51 (1995), pp. 4277-4286 | DOI | MR
[6] Thermo field dynamics of black holes, Phys. Lett. A, Volume 57 (1976), pp. 107-110 | DOI | MR
[7] Path integral derivation of black hole radiance, Phys. Rev. D, Volume 13 (1976), pp. 2188-2203 | DOI
[8] Quantum field theory in Schwarzschild and Rindler spaces, Phys. Rev. D, Volume 11 (1975), pp. 1404-1423 | DOI | MR
[9] Notes on black hole evaporation, Phys. Rev. D, Volume 14 (1976), pp. 870-892 | DOI
[10] Quantum toy model for black-hole back-reaction, Phys. Rev. D, Volume 76 (2007), 101502 | DOI | MR
[11] Black hole evaporation – 50 years, Gen. Relativ. Gravit., Volume 57 (2025), 78 | DOI | MR
[12] Thermality from a Rindler quench, Class. Quant. Grav., Volume 35 (2018) no. 20, 205006 | DOI | MR
[13] Synthetic Unruh effect in cold atoms, Phys. Rev. A, Volume 95 (2017) no. 1, 013627 | DOI
[14] On the Hawking effect, Phys. Rev. D, Volume 64 (2001), 024029 | DOI | MR
[15] Neutrino stress tensor regularization in two-dimensional space-time, Proc. Roy. Soc. Lond. A, Volume 356 (1977), pp. 259-268 | DOI
[16] The global approach to quantum field theory. Vol. 1, 2, Int. Ser. Monogr. Phys., Volume 114 (2003), pp. 1-1042 | MR | Zbl
[17] Regularization, renormalization, and covariant geodesic point separation, Phys. Rev. D, Volume 17 (1978), pp. 946-963 | DOI | MR
[18] Universal definition of the nonconformal trace anomaly, Phys. Rev. Lett., Volume 132 (2024) no. 7, 071601 | DOI | MR
Cité par Sources :
Commentaires - Politique