Comptes Rendus
Intervention en colloque
Effects of spin–orbit coupling and Rabi fields in Tomonaga–Luttinger liquids: current status and open questions
[Effets du couplage spin-orbite et des champs de Rabi dans les liquides de Tomonaga-Luttinger : état de l’art et questions ouvertes]
Comptes Rendus. Physique, Volume 26 (2025), pp. 483-514.

Cet article fait partie du numéro thématique Questions ouvertes dans le problème quantique à N corps coordonné par Yvan Castin et al..

We discuss the effects of spin–orbit coupling and Rabi fields in Tomonaga–Luttinger liquids for SU(2) and SU(3) Fermi systems. In the SU(2) case, we show that spin–orbit coupling and Rabi fields mix separated spin and charge excitations producing helical massless bosons, which we call Weyl bosons in analogy to their cousins, the Weyl fermions. We discuss the phase diagram and the velocities of bosonic modes, showing where different flavors of Weyl bosons emerge. We suggest that the dispersion and helicity of Weyl bosons can be detected through measurements of the the dynamical structure factor tensor. In the SU(3) case, we preliminarily discuss the effects of spin–orbit coupling and Rabi fields, and conjecture that the emergent collective modes have a scalar (charge), vector (spin) and tensor (quadrupolar) components, suggesting that these modes are more complex than Weyl bosons. To describe spin–orbit coupling, we use the terminology color-orbit coupling, where the three internal states are labeled as colors Red, Green and Blue. We discuss the phase diagram and velocities of boson modes in the non-interacting regime and ponder over several open questions that need to be addressed for SU(3) systems. Lastly, we make some concluding remarks and suggest potential experimental candidates, with two and three internal states, where spin–orbit or color-orbit coupling and Rabi fields could be used to investigate the emergence of unusual collective modes with scalar, vector and tensor properties.

Nous étudions les effets du couplage spin-orbite et des champs de Rabi dans les liquides de Tomonaga-Luttinger pour les systèmes de fermions de symétrie SU(2) ou SU(3). Dans le cas d’une symétrie SU(2), nous montrons que le couplage spin-orbite et les champs de Rabi mélangent les excitations de spin et de charge — autrement séparées — en produisant des bosons hélicoïdaux sans masse, que nous appelons bosons de Weyl par analogie avec leurs cousins, les fermions de Weyl. Nous déterminons le diagramme de phase et les vitesses des modes bosoniques, en précisant dans quels secteurs émergent les différents types de bosons de Weyl. Nous proposons d’extraire la relation de dispersion et l’hélicité des bosons de Weyl de mesures du facteur de structure dynamique tensoriel. Dans le cas d’une symétrie SU(3), nous effectuons une première analyse des effets du couplage spin-orbite et des champs de Rabi, et conjecturons que les modes collectifs émergents ont une composante scalaire (charge), vectorielle (spin) et tensorielle (quadripolaire), ce qui suggère que ces modes sont plus complexes que les bosons de Weyl. Pour décrire le couplage spin-orbite, nous utilisons la notion de couplage couleur-orbite, où les trois états internes sont repérés par les couleurs rouge, verte et bleue. Nous discutons du diagramme de phase et des vitesses des modes de bosons dans le régime sans interaction et réfléchissons à plusieurs questions ouvertes restant à traiter dans les systèmes de symétrie SU(3). Enfin, nous formulons quelques remarques finales et identifions des systèmes expérimentaux, à deux ou à trois états internes, dans lesquels le couplage spin-orbite ou couleur-orbite et les champs de Rabi pourraient être utilisés pour étudier l’émergence de modes collectifs inhabituels avec des propriétés scalaires, vectorielles et tensorielles.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.254
Keywords: Spin–orbit coupling, Color-orbit coupling, Rabi fields, Tomonaga–Luttinger liquids, Weyl bosons, Interacting fermions, One dimension
Mots-clés : Couplage spin-orbite, Couplage couleur-orbite, Champs de Rabi, Liquides de Tomonaga-Luttinger, Bosons de Weyl, Fermions en interaction, Systèmes unidimensionnels

Xiaoyong Zhang 1 ; Carlos A. R. Sá de Melo 1

1 School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_483_0,
     author = {Xiaoyong Zhang and Carlos A. R. S\'a de Melo},
     title = {Effects of spin{\textendash}orbit coupling and {Rabi} fields in {Tomonaga{\textendash}Luttinger} liquids: current status and open questions},
     journal = {Comptes Rendus. Physique},
     pages = {483--514},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.254},
     language = {en},
}
TY  - JOUR
AU  - Xiaoyong Zhang
AU  - Carlos A. R. Sá de Melo
TI  - Effects of spin–orbit coupling and Rabi fields in Tomonaga–Luttinger liquids: current status and open questions
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 483
EP  - 514
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.254
LA  - en
ID  - CRPHYS_2025__26_G1_483_0
ER  - 
%0 Journal Article
%A Xiaoyong Zhang
%A Carlos A. R. Sá de Melo
%T Effects of spin–orbit coupling and Rabi fields in Tomonaga–Luttinger liquids: current status and open questions
%J Comptes Rendus. Physique
%D 2025
%P 483-514
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.254
%G en
%F CRPHYS_2025__26_G1_483_0
Xiaoyong Zhang; Carlos A. R. Sá de Melo. Effects of spin–orbit coupling and Rabi fields in Tomonaga–Luttinger liquids: current status and open questions. Comptes Rendus. Physique, Volume 26 (2025), pp. 483-514. doi : 10.5802/crphys.254. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.254/

[1] S.-I. Tomonaga Remarks on Bloch’s method of sound waves applied to many-fermion problems, Prog. Theor. Phys., Volume 5 (1950) no. 4, pp. 544-569 | DOI

[2] J. M. Luttinger An exactly soluble model of a manyfermion system, J. Math. Phys., Volume 4 (1963) no. 9, pp. 1154-1162 | DOI

[3] F. D. M. Haldane ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas, J. Phys. C: Solid State Phys., Volume 14 (1981) no. 19, pp. 2585-2609 | DOI

[4] T. Giamarchi Quantum Physics in One Dimension, Oxford University Press, Oxford, 2003 | DOI

[5] A. Altland; B. Simons Condensed Matter Field Theory, Cambridge University Press, Cambridge, 2023 | DOI

[6] A. Imambekov; T. L. Schmidt; L. I. Glazman One-dimensional quantum liquids: beyond the Luttinger liquid paradigm, Rev. Mod. Phys., Volume 84 (2012), pp. 1253-1306 | DOI

[7] A. J. Niemi; N. R. Walet Splitting the gluon?, Phys. Rev. D, Volume 72 (2005), 054007 | DOI

[8] L. Faddeev; A. J. Niemi Spin-charge separation, conformal covariance and the SU(2) Yang–Mills theory, Nucl. Phys. B, Volume 776 (2007) no. 1, pp. 38-65 | DOI

[9] M. N. Chernodub; A. J. Niemi Spin-charge separation and the Pauli electron, JETP Lett., Volume 85 (2007) no. 8, pp. 353-357 | DOI

[10] G. A. Diamandis; B. C. Georgalas; N. E. Mavromatos N=1 supersymmetric spin-charge separation in effective gauge theories of planar magnetic superconductors, Mod. Phys. Lett. A, Volume 13 (1998) no. 05, pp. 387-404 | DOI

[11] C. Xiong From the fourth color to spin-charge separation: Neutrinos and spinons, Mod. Phys. Lett. A, Volume 30 (2015) no. 25, 1530021 | DOI

[12] C. Kim; A. Y. Matsuura; Z.-X. Shen; N. Motoyama; H. Eisaki; S. Uchida; T. Tohyama; S. Maekawa Observation of spin-charge separation in one-dimensional SrCuO2, Phys. Rev. Lett., Volume 77 (1996), pp. 4054-4057 | DOI

[13] B. J. Kim; H. Koh; E. Rotenberg; S.-J. Oh; H. Eisaki; N. Motoyama; S. Uchida; T. Tohyama; S. Maekawa; Z.-X. Shen; C. Kim Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2, Nat. Phys., Volume 2 (2006) no. 6, pp. 397-401 | DOI

[14] O. M. Auslaender; A. Yacoby; R. de Picciotto; K. W. Baldwin; L. N. Pfeiffer; K. W. West Tunneling spectroscopy of the elementary excitations in a one-dimensional wire, Science, Volume 295 (2002) no. 5556, pp. 825-828 | DOI

[15] O. M. Auslaender; H. Steinberg; A. Yacoby; Y. Tserkovnyak; B. I. Halperin; K. W. Baldwin; L. N. Pfeiffer; K. W. West Spin-charge separation and localization in one dimension, Science, Volume 308 (2005) no. 5718, pp. 88-92 | DOI

[16] R. Senaratne; D. Cavazos-Cavazos; S. Wang; F. He; Y.-T. Chang; A. Kafle; H. Pu; X.-W. Guan; R. G. Hulet Spin-charge separation in a one-dimensional Fermi gas with tunable interactions, Science, Volume 376 (2022) no. 6599, pp. 1305-1308 | DOI

[17] D. Cavazos-Cavazos; R. Senaratne; A. Kafle; R. G. Hulet Thermal disruption of a Luttinger liquid, Nat. Commun., Volume 14 (2023) no. 1, 3154 | DOI

[18] J. Sinova; S. O. Valenzuela; J. Wunderlich; C. H. Back; T. Jungwirth Spin Hall effects, Rev. Mod. Phys., Volume 87 (2015), pp. 1213-1260 | DOI

[19] T. Kawada; M. Kawaguchi; T. Funato; H. Kohno; M. Hayashi Acoustic spin Hall effect in strong spin–orbit metals, Sci. Adv., Volume 7 (2021) no. 2, eabd9697 | DOI

[20] M. Z. Hasan; C. L. Kane Colloquium: topological insulators, Rev. Mod. Phys., Volume 82 (2010), pp. 3045-3067 | DOI

[21] X.-L. Qi; S.-C. Zhang Topological insulators and superconductors, Rev. Mod. Phys., Volume 83 (2011), pp. 1057-1110 | DOI

[22] M. Sato; Y. Ando Topological superconductors: a review, Rep. Prog. Phys., Volume 80 (2017) no. 7, 076501 | DOI

[23] H. D. Scammell; J. Ingham; M. Geier; T. Li Intrinsic first- and higher-order topological superconductivity in a doped topological insulator, Phys. Rev. B, Volume 105 (2022), 195149 | DOI

[24] M. Zeng; D.-H. Xu; Z.-M. Wang; L.-H. Hu Spin-orbit coupled superconductivity with spin-singlet nonunitary pairing, Phys. Rev. B, Volume 107 (2023), 094507 | DOI

[25] E. Rashba; V. Sheka Combined resonance in electron InSb, Sov. Phys., Solid State, Volume 3 (1961) no. 6, pp. 1357-1362

[26] G. Dresselhaus Spin-orbit coupling effects in zinc blende structures, Phys. Rev., Volume 100 (1955), pp. 580-586 | DOI

[27] Y. A. Bychkov; É. I. Rashba Properties of a 2D electron gas with lifted spectral degeneracy, JETP Lett., Volume 39 (1984) no. 2, pp. 78-81

[28] J. Sinova; A. H. MacDonald Theory of spin–orbit effects in semiconductors, Semicond. Semimetals, Volume 82 (2008), pp. 45-87 | DOI

[29] S. Schott; E. R. McNellis; C. B. Nielsen; H.-Y. Chen; S. Watanabe; H. Tanaka; I. McCulloch; K. Takimiya; J. Sinova; H. Sirringhaus Tuning the effective spin–orbit coupling in molecular semiconductors, Nat. Commun., Volume 8 (2017) no. 1, 15200 | DOI

[30] J. Chen; K. Wu; W. Hu; J. Yang Spin–orbit coupling in 2D semiconductors: a theoretical perspective, J. Phys. Chem. Lett., Volume 12 (2021) no. 51, pp. 12256-12268 | DOI

[31] E. Marcellina; A. R. Hamilton; R. Winkler; D. Culcer Spin-orbit interactions in inversion-asymmetric two-dimensional hole systems: a variational analysis, Phys. Rev. B, Volume 95 (2017), 075305 | DOI

[32] D. Shcherbakov; P. Stepanov; S. Memaran; Y. Wang; Y. Xin; J. Yang; K. Wei; R. Baumbach; W. Zheng; K. Watanabe; T. Taniguchi; M. Bockrath; D. Smirnov; T. Siegrist; W. Windl; L. Balicas; C. N. Lau Layer- and gate-tunable spin–orbit coupling in a high-mobility few-layer semiconductor, Sci. Adv., Volume 7 (2021) no. 5, eabe2892 | DOI

[33] D. L. Campbell; G. Juzeliūnas; I. B. Spielman Realistic Rashba and Dresselhaus spin–orbit coupling for neutral atoms, Phys. Rev. A, Volume 84 (2011), 025602 | DOI

[34] V. Galitski; I. B. Spielman Spin–orbit coupling in quantum gases, Nature, Volume 494 (2013) no. 7435, pp. 49-54 | DOI

[35] Y.-J. Lin; K. Jiménez-García; I. B. Spielman Spin–orbit-coupled Bose–Einstein condensates, Nature, Volume 471 (2011) no. 7336, pp. 83-86 | DOI

[36] M. Atala; M. Aidelsburger; M. Lohse; J. T. Barreiro; B. Paredes; I. Bloch Observation of chiral currents with ultracold atoms in bosonic ladders, Nat. Phys., Volume 10 (2014) no. 8, pp. 588-593 | DOI

[37] A. Frölian; C. S. Chisholm; E. Neri; C. R. Cabrera; R. Ramos; A. Celi; L. Tarruell Realizing a 1D topological gauge theory in an optically dressed BEC, Nature, Volume 608 (2022) no. 7922, pp. 293-297 | DOI

[38] L. W. Cheuk; A. T. Sommer; Z. Hadzibabic; T. Yefsah; W. S. Bakr; M. W. Zwierlein Spin-injection spectroscopy of a spin-orbit coupled Fermi gas, Phys. Rev. Lett., Volume 109 (2012), 095302 | DOI

[39] M. Mancini; G. Pagano; G. Cappellini; L. Livi; M. Rider; J. Catani; C. Sias; P. Zoller; M. Inguscio; M. Dalmonte; L. Fallani Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science, Volume 349 (2015) no. 6255, pp. 1510-1513 | DOI

[40] S. Kolkowitz; S. L. Bromley; T. Bothwell; M. L. Wall; G. E. Marti; A. P. Koller; X. Zhang; A. M. Rey; J. Ye Spin–orbit-coupled fermions in an optical lattice clock, Nature, Volume 542 (2017) no. 7639, pp. 66-70 | DOI

[41] D. L. Campbell; I. B. Spielman Rashba realization: Raman with RF, New J. Phys., Volume 18 (2016) no. 3, 033035 | DOI

[42] L. Huang; Z. Meng; P. Wang; P. Peng; S.-L. Zhang; L. Chen; D. Li; Q. Zhou; J. Zhang Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases, Nat. Phys., Volume 12 (2016) no. 6, pp. 540-544 | DOI

[43] A. Valdés-Curiel; D. Trypogeorgos; Q.-Y. Liang; R. P. Anderson; I. B. Spielman Topological features without a lattice in Rashba spin–orbit coupled atoms, Nat. Commun., Volume 12 (2021) no. 1, 593 | DOI

[44] K. Seo; L. Han; C. A. R. Sá de Melo Topological phase transitions in ultracold Fermi superfluids: the evolution from Bardeen-Cooper-Schrieffer to Bose-Einstein-condensate superfluids under artificial spin–orbit fields, Phys. Rev. A, Volume 85 (2012), 033601 | DOI

[45] W. Pauli The connection between spin and statistics, Phys. Rev., Volume 58 (1940), pp. 716-722 | DOI

[46] M. K. Gaillard; P. D. Grannis; F. J. Sciulli The standard model of particle physics, Rev. Mod. Phys., Volume 71 (1999), p. S96-S111 | DOI

[47] S. Weinberg The making of the standard model, Eur. Phys. J. C, Volume 34 (2004) no. 1, pp. 5-13 | DOI

[48] P. A. M. Dirac The quantum theory of the electron, Proc. R. Soc. Lond. A, Volume 117 (1928) no. 778, pp. 610-624 | DOI

[49] E. Majorana Teoria simmetrica dell’elettrone e del positrone, Nuovo Cimento, Volume 14 (1937) no. 4, pp. 171-184 | DOI

[50] H. Weyl Elektron und gravitation. I, Z. Phys., Volume 56 (1929) no. 5, pp. 330-352 | DOI

[51] D. Castelvecchi Evidence of elusive Majorana particle dies — but computing hope lives on, Nature, Volume 591 (2021) no. 7850, pp. 354-355 | DOI

[52] O. Vafek; A. Vishwanath Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and weyl semimetals, Annu. Rev. Condens. Matter Phys., Volume 5 (2014), pp. 83-112 | DOI

[53] M. Horio; C. E. Matt; K. Kramer; D. Sutter; A. M. Cook; Y. Sassa; K. Hauser; M. Månsson; N. C. Plumb; M. Shi; O. J. Lipscombe; S. M. Hayden; T. Neupert; J. Chang Two-dimensional type-II Dirac fermions in layered oxides, Nat. Commun., Volume 9 (2018) no. 1, 3252 | DOI

[54] Y. Ran; F. Wang; H. Zhai; A. Vishwanath; D.-H. Lee Nodal spin density wave and band topology of the FeAs-based materials, Phys. Rev. B, Volume 79 (2009), 014505 | DOI

[55] P. Richard; K. Nakayama; T. Sato; M. Neupane; Y.-M. Xu; J. H. Bowen; G. F. Chen; J. L. Luo; N. L. Wang; X. Dai; Z. Fang; H. Ding; T. Takahashi Observation of Dirac cone electronic dispersion in BaFe2As2, Phys. Rev. Lett., Volume 104 (2010), 137001 | DOI

[56] S. Y. Tan; Y. Fang; D. H. Xie; W. Feng; C. H. P. Wen; Q. Song; Q. Y. Chen; W. Zhang; Y. Zhang; L. Z. Luo; B. P. Xie; X. C. Lai; D. L. Feng Observation of Dirac cone band dispersions in FeSe thin films by photoemission spectroscopy, Phys. Rev. B, Volume 93 (2016), 104513 | DOI

[57] K. S. Novoselov; A. K. Geim; S. V. Morozov; D. Jiang; M. I. Katsnelson; I. V. Grigorieva; S. V. Dubonos; A. A. Firsov Two-dimensional gas of massless Dirac fermions in graphene, Nature, Volume 438 (2005) no. 7065, pp. 197-200 | DOI

[58] S.-Y. Xu; I. Belopolski; N. Alidoust; M. Neupane; G. Bian; C. Zhang; R. Sankar; G. Chang; Z. Yuan; C.-C. Lee; S.-M. Huang; H. Zheng; J. Ma; D. S. Sanchez; BK. Wang; A. Bansil; F. Chou; P. P. Shibayev; H. Lin; S. Jia; M. Z. Hasan Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science, Volume 349 (2015) no. 6248, pp. 613-617 | DOI

[59] B. Q. Lv; H. M. Weng; B. B. Fu; X. P. Wang; H. Miao; J. Ma; P. Richard; X. C. Huang; L. X. Zhao; G. F. Chen; Z. Fang; X. Dai; T. Qian; H. Ding Experimental discovery of weyl semimetal TaAs, Phys. Rev. X, Volume 5 (2015), 031013 | DOI

[60] D. M. Kurkcuoglu; C. A. R. Sá de Melo Creating spin-one fermions in the presence of artificial spin–orbit fields: emergent spinor physics and spectroscopic properties, J. Low-Temp. Phys., Volume 191 (2018) no. 3, pp. 174-183 | DOI

[61] D. M. Kurkcuoglu; C. A. R. Sá de Melo Color superfluidity of neutral ultracold fermions in the presence of color-flip and color-orbit fields, Phys. Rev. A, Volume 97 (2018), 023632 | DOI

[62] C. Chin; R. Grimm; P. Julienne; E. Tiesinga Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010), pp. 1225-1286 | DOI

[63] H. Biss; L. Sobirey; N. Luick; M. Bohlen; J. J. Kinnunen; G. M. Bruun; T. Lompe; H. Moritz Excitation spectrum and superfluid gap of an ultracold Fermi gas, Phys. Rev. Lett., Volume 128 (2022), 100401 | DOI

[64] L. Sobirey; H. Biss; N. Luick; M. Bohlen; H. Moritz; T. Lompe Observing the influence of reduced dimensionality on fermionic superfluids, Phys. Rev. Lett., Volume 129 (2022), 083601 | DOI

[65] M. Chapman; C. A. R. Sá de Melo Atoms playing dress-up, Nature, Volume 471 (2011) no. 7336, pp. 41-42 | DOI

[66] P. Wang; Z.-Q. Yu; Z. Fu; J. Miao; L. Huang; S. Chai; H. Zhai; J. Zhang Spin-orbit coupled degenerate Fermi gases, Phys. Rev. Lett., Volume 109 (2012), 095301 | DOI

[67] T. Fukuhara; Y. Takasu; M. Kumakura; Y. Takahashi Degenerate Fermi gases of ytterbium, Phys. Rev. Lett., Volume 98 (2007), 030401 | DOI

[68] Y. Takasu; Y. Fukushima; Y. Nakamura; Y. Takahashi Magnetoassociation of a Feshbach molecule and spin–orbit interaction between the ground and electronically excited states, Phys. Rev. A, Volume 96 (2017), 023602 | DOI

[69] B. J. DeSalvo; M. Yan; P. G. Mickelson; Y. N. Martinez de Escobar; T. C. Killian Degenerate Fermi gas of 87Sr, Phys. Rev. Lett., Volume 105 (2010), 030402 | DOI

[70] I. B. Spielman Raman processes and effective gauge potentials, Phys. Rev. A, Volume 79 (2009), 063613 | DOI

[71] Y.-J. Lin; R. L. Compton; A. R. Perry; W. D. Phillips; J. V. Porto; I. B. Spielman Bose-Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett., Volume 102 (2009), 130401 | DOI

[72] D. C. Mattis; E. H. Lieb Exact solution of a manyfermion system and its associated boson field, J. Math. Phys., Volume 6 (1965) no. 2, pp. 304-312 | DOI

[73] M. Dressel Spin-charge separation in quasi one-dimensional organic conductors, Naturwissenschaften, Volume 90 (2003) no. 8, pp. 337-344 | DOI

[74] J. Sólyom The Fermi gas model of one-dimensional conductors, Adv. Phys., Volume 28 (1979) no. 2, pp. 201-303 | DOI

[75] D.-W. Wang; A. J. Millis; S. D. Sarma Coulomb Luttinger liquid, Phys. Rev. B, Volume 64 (2001) no. 19, 193307 | DOI

[76] F. He; Y.-Z. Jiang; H.-Q. Lin; R. G. Hulet; H. Pu; X.-W. Guan Emergence and disruption of spin-charge separation in one-dimensional repulsive fermions, Phys. Rev. Lett., Volume 125 (2020), 190401 | DOI

[77] C. N. Yang Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett., Volume 19 (1967), pp. 1312-1315 | DOI

[78] M. Gaudin Un système à une dimension de fermions en interaction, Phys. Lett. A, Volume 24 (1967) no. 1, pp. 55-56 | DOI

[79] O. Tsyplyatyev Splitting of the Fermi point of strongly interacting electrons in one dimension: a nonlinear effect of spin-charge separation, Phys. Rev. B, Volume 105 (2022), L121112 | DOI

[80] P. M. T. Vianez; Y. Jin; M. Moreno; A. S. Anirban; A. Anthore; W. K. Tan; J. P. Griffiths; I. Farrer; D. A. Ritchie; A. J. Schofield; O. Tsyplyatyev; C. J. B. Ford Observing separate spin and charge Fermi seas in a strongly correlated one-dimensional conductor, Sci. Adv., Volume 8 (2022) no. 24, eabm2781 | DOI

[81] L. Han; C. A. R. Sá de Melo Evolution from BCS to BEC superfluidity in the presence of spin–orbit coupling, Phys. Rev. A, Volume 85 (2012), 011606 | DOI

[82] K. Seo; L. Han; C. A. R. Sá de Melo Emergence of Majorana and Dirac particles in ultracold fermions via tunable interactions, spin-orbit effects, and Zeeman fields, Phys. Rev. Lett., Volume 109 (2012), 105303 | DOI

[83] P. D. Powell; G. Baym; C. A. R. Sá de Melo Superfluid transition temperature and fluctuation theory of spin–orbit- and Rabi-coupled fermions with tunable interactions, Phys. Rev. A, Volume 105 (2022), 063304 | DOI

[84] M. Gong; S. Tewari; C. Zhang BCS-BEC crossover and topological phase transition in 3D spin-orbit coupled degenerate Fermi gases, Phys. Rev. Lett., Volume 107 (2011), 195303 | DOI

[85] H. Hu; L. Jiang; X.-J. Liu; H. Pu Probing anisotropic superfluidity in atomic Fermi gases with Rashba spin-orbit coupling, Phys. Rev. Lett., Volume 107 (2011), 195304 | DOI

[86] Z.-Q. Yu; H. Zhai Spin-orbit coupled Fermi gases across a Feshbach resonance, Phys. Rev. Lett., Volume 107 (2011), 195305 | DOI

[87] J. P. A. Devreese; J. Tempere; C. A. R. Sá de Melo Effects of spin-orbit coupling on the Berezinskii-Kosterlitz-Thouless transition and the vortex-antivortex structure in two-dimensional Fermi gases, Phys. Rev. Lett., Volume 113 (2014), 165304 | DOI

[88] J. P. A. Devreese; J. Tempere; C. A. R. Sá de Melo Topological phases and collective modes in U(1) and SU(2) sectors of spin–orbit-coupled two-dimensional superfluid Fermi gases, Phys. Rev. A, Volume 105 (2022), 033304 | DOI

[89] R. A. Williams; M. C. Beeler; L. J. LeBlanc; K. Jiménez-García; I. B. Spielman Raman-induced interactions in a single-component Fermi gas near an s-wave Feshbach resonance, Phys. Rev. Lett., Volume 111 (2013), 095301 | DOI

[90] X. Zhang; C. A. R. Sá de Melo Beyond spin-charge separation: helical modes and topological quantum phase transitions in one-dimensional Fermi gases with spin–orbit and Rabi couplings (2024) | arXiv

[91] A. Imambekov; L. I. Glazman Universal theory of nonlinear Luttinger liquids, Science, Volume 323 (2009) no. 5911, pp. 228-231 | DOI

[92] X. Zhang Effects of spin–orbit coupling and Rabi fields in SU(2) and SU(3) symmetric Tomonaga–Luttinger liquids, PhD thesis, Georgia Institute of Technology (2025)

[93] I. M. Lifshitz Anomalies of electron characteristics of a metal in the high pressure region, Sov. Phys. JETP, Volume 11 (1960) no. 5, pp. 1130-1135

[94] R. D. Duncan; C. A. R. Sá de Melo Thermodynamic properties in the evolution from BCS to Bose-Einstein condensation for a d-wave superconductor at low temperatures, Phys. Rev. B, Volume 62 (2000), pp. 9675-9687 | DOI

[95] S. S. Botelho; C. A. R. Sá de Melo Lifshitz transition in d-wave superconductors, Phys. Rev. B, Volume 71 (2005), 134507 | DOI

[96] M. Olshanii Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett., Volume 81 (1998), pp. 938-941 | DOI

[97] N. Navon; R. P. Smith; Z. Hadzibabic Quantum gases in optical boxes, Nat. Phys., Volume 17 (2021) no. 12, pp. 1334-1341 | DOI

[98] K.-N. Schymik; S. Pancaldi; F. Nogrette; D. Barredo; J. Paris; A. Browaeys; T. Lahaye Single atoms with 6000-second trapping lifetimes in optical-tweezer arrays at cryogenic temperatures, Phys. Rev. Appl., Volume 16 (2021), 034013 | DOI

[99] T. F. Schmidutz; I. Gotlibovych; A. L. Gaunt; R. P. Smith; N. Navon; Z. Hadzibabic Quantum Joule-Thomson effect in a saturated homogeneous Bose gas, Phys. Rev. Lett., Volume 112 (2014), 040403 | DOI

[100] G. Källén On the definition of the renormalization constants in quantum electrodynamics, Helv. Phys. Acta, Volume 25 (1952) no. IV, pp. 417-434 | DOI

[101] H. Lehmann Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder, Nuovo Cimento, Volume 11 (1954) no. 4, pp. 342-357 | DOI

[102] E. H. Moore On the reciprocal of the general algebraic matrix, Bull. Am. Math. Soc., Volume 26 (1920), pp. 394-395 | DOI

[103] R. Penrose A generalized inverse for matrices, Math. Proc. Camb. Philos. Soc., Volume 51 (1955) no. 3, pp. 406-413 | DOI

[104] L. Onsager Reciprocal relations in irreversible processes. I, Phys. Rev., Volume 37 (1931), pp. 405-426 | DOI

[105] L. Onsager Reciprocal relations in irreversible processes. II, Phys. Rev., Volume 38 (1931), pp. 2265-2279 | DOI

[106] F. Scazza; C. Hofrichter; M. Höfer; P. C. De Groot; I. Bloch; S. Fölling Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions, Nat. Phys., Volume 10 (2014) no. 10, pp. 779-784 | DOI

[107] M. H. Yau; C. A. R. Sá de Melo SU(3) vs. SU(2) fermions in optical lattices: Color-Hall vs. spin-Hall topological insulators, EPL, Volume 135 (2021) no. 1, 16001 | DOI

[108] M. H. Yau; C. A. R. Sá de Melo Eigenspectrum, Chern numbers and phase diagrams of ultracold color-orbit-coupled SU(3) fermions in optical lattices, Phys. Rev. A, Volume 103 (2021), 043302 | DOI

[109] C. D. Hamley; C. S. Gerving; T. M. Hoang; E. M. Bookjans; M. S. Chapman Spin-nematic squeezed vacuum in a quantum gas, Nat. Phys., Volume 8 (2012) no. 4, pp. 305-308 | DOI

[110] H. M. Bharath; M. S. Chapman; C. A. R. Sá de Melo Staircase in magnetization and entanglement entropy of spinor condensates, Phys. Rev. A, Volume 98 (2018), 031601 | DOI

[111] B. H. M.; M. Boguslawski; M. Barrios; L. Xin; M. S. Chapman Exploring non-abelian geometric phases in spin-1 ultracold atoms, Phys. Rev. Lett., Volume 123 (2019), 173202 | DOI

[112] C. S. Madasu; C. Mitra; L. Gabardos; K. D. Rathod; T. Zanon-Willette; C. Miniatura; F. Chevy; C. Kwong; D. Wilkowski Experimental realization of a SU(3) color-orbit coupling in an ultracold gas (2025) | arXiv

Cité par Sources :

Commentaires - Politique