Comptes Rendus
Article de recherche
Parametric pair production of collective excitations in a Bose–Einstein condensate
[Production paramétrique de paires d’excitations collectives dans un condensat de Bose–Einstein]
Comptes Rendus. Physique, Online first (2024), pp. 1-15

By exciting the transverse breathing mode of an elongated Bose–Einstein condensate, we parametrically produce longitudinal collective excitations in a pairwise manner. This process, also referred to as Faraday wave generation, can be seen as an analog to cosmological particle production. Building upon single particle detection, we investigate the early time dynamics of the exponential growth and compare our observations with a Bogoliubov description. The growth rate we observe experimentally is in very good agreement with theoretical predictions, demonstrating the validity of the Bogoliubov description and thereby confirming the smallness of quasiparticle interactions in such an elongated gas. We also discuss the presence of oscillations in the atom number, which are due to pair correlations and to the rate at which interactions are switched off.

Nous excitons le mode de respiration transverse d’un condensat de Bose–Einstein allongé afin de générer, de manière paramétrique, des paires d’excitations collectives longitudinales. Ce processus, souvent dénommé instabilité de Faraday, peut également être interprété comme analogue à la production cosmologique de particules. Dans ce travail, nous tirons parti de notre système capable de détecter un atome unique pour étudier le développement du motif généré et sa croissance exponentielle. Nous comparons nos observations à celles prédites par la théorie de Bogoliubov pour un système homogène. Le taux de croissance que nous mesurons expérimentalement est en très bon accord avec celui prédit théoriquement, ce qui confirme la validité de la description du système via la théorie de Bogoliubov ainsi que la faiblesse des interactions entre quasiparticules dans un condensat très allongé. Nous discutons également de la présence d’oscillations dans le nombre d’atomes détectés, résultant du processus de création par paires et du temps mis pour éteindre les interactions interatomiques.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.266
Keywords: Parametric amplification, Bose–Einstein condensate, Faraday waves, quasiparticles, collective excitations, analog gravity, early universe
Mots-clés : Amplification paramétrique, condensat de Bose–Einstein, ondes de Faraday, quasiparticules, excitations collectives, gravité analogue, univers primordial

Victor Gondret 1 ; Rui Dias 1 ; Clothilde Lamirault 1 ; Léa Camier 1 ; Amaury Micheli 2 ; Charlie Leprince 1 ; Quentin Marolleau 1 ; Scott Robertson 3 ; Denis Boiron 1 ; Christoph I. Westbrook 1

1 Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
2 RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, Saitama 351-0198, Japan
3 Institut Pprime, CNRS – Université de Poitiers – ISAE-ENSMA. TSA 51124, 86073 Poitiers Cedex 9, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S2_A19_0,
     author = {Victor Gondret and Rui Dias and Clothilde Lamirault and L\'ea Camier and Amaury Micheli and Charlie Leprince and Quentin Marolleau and Scott Robertson and Denis Boiron and Christoph I. Westbrook},
     title = {Parametric pair production of collective excitations in a {Bose{\textendash}Einstein} condensate},
     journal = {Comptes Rendus. Physique},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     doi = {10.5802/crphys.266},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Victor Gondret
AU  - Rui Dias
AU  - Clothilde Lamirault
AU  - Léa Camier
AU  - Amaury Micheli
AU  - Charlie Leprince
AU  - Quentin Marolleau
AU  - Scott Robertson
AU  - Denis Boiron
AU  - Christoph I. Westbrook
TI  - Parametric pair production of collective excitations in a Bose–Einstein condensate
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.266
LA  - en
ID  - CRPHYS_2024__25_S2_A19_0
ER  - 
%0 Journal Article
%A Victor Gondret
%A Rui Dias
%A Clothilde Lamirault
%A Léa Camier
%A Amaury Micheli
%A Charlie Leprince
%A Quentin Marolleau
%A Scott Robertson
%A Denis Boiron
%A Christoph I. Westbrook
%T Parametric pair production of collective excitations in a Bose–Einstein condensate
%J Comptes Rendus. Physique
%D 2024
%V 25
%N S2
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.266
%G en
%F CRPHYS_2024__25_S2_A19_0
Victor Gondret; Rui Dias; Clothilde Lamirault; Léa Camier; Amaury Micheli; Charlie Leprince; Quentin Marolleau; Scott Robertson; Denis Boiron; Christoph I. Westbrook. Parametric pair production of collective excitations in a Bose–Einstein condensate. Comptes Rendus. Physique, Online first (2024), pp. 1-15. doi: 10.5802/crphys.266

[1] Lev Kofman; Andrei Linde; Alexei A. Starobinsky Reheating after inflation, Phys. Rev. Lett., Volume 73 (1994), pp. 3195-3198 | DOI

[2] Michael Faraday On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Philos. Trans. R. Soc. Lond., Volume 121 (1831), pp. 299-340 | DOI

[3] J Miles; D Henderson Parametrically forced surface waves, Ann. Rev. Fluid Mech., Volume 22 (1990), pp. 143-165 | DOI

[4] W. S. Edwards; S. Fauve Patterns and quasi-patterns in the Faraday experiment, J. Fluid Mech., Volume 278 (1994), pp. 123-148 | DOI

[5] Kestutis Staliunas; Stefano Longhi; Germán J. de Valcárcel Faraday patterns in Bose–Einstein condensates, Phys. Rev. Lett., Volume 89 (2002), 210406, 4 pages | DOI

[6] Nobuyuki Shukuno; Yuto Sano; Makoto Tsubota Faraday waves in Bose–Einstein condensates — The excitation by the modulation of the interaction and the potential, J. Phys. Soc. Japan, Volume 92 (2023) no. 6, 064602, 8 pages | DOI

[7] P. Engels; C. Atherton; M. A. Hoefer Observation of Faraday waves in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 98 (2007), 095301, 4 pages | DOI

[8] Alexandru I. Nicolin; R. Carretero-González; P. G. Kevrekidis Faraday waves in Bose–Einstein condensates, Phys. Rev. A, Volume 76 (2007), 063609, 10 pages | DOI

[9] J. H. V. Nguyen; M. C. Tsatsos; D. Luo; A. U. J. Lode; G. D. Telles; V. S. Bagnato; R. G. Hulet Parametric excitation of a Bose–Einstein condensate: from Faraday waves to granulation, Phys. Rev. X, Volume 9 (2019), 011052, 11 pages | DOI

[10] J. Smits; L. Liao; H. T. C. Stoof; P. van der Straten Observation of a space-time crystal in a superfluid quantum gas, Phys. Rev. Lett., Volume 121 (2018), 185301, 5 pages | DOI

[11] J. Smits; H. T. C. Stoof; P. van der Straten Spontaneous breaking of a discrete time-translation symmetry, Phys. Rev. A, Volume 104 (2021), 023318, 8 pages | DOI

[12] J. Smits; H. T. C. Stoof; P. van der Straten On the long-term stability of space-time crystals, New J. Phys., Volume 22 (2020) no. 10, 105001, 9 pages | DOI

[13] Han Fu; Lei Feng; Brandon M. Anderson; Logan W. Clark; Jiazhong Hu; Jeffery W. Andrade; Cheng Chin; K. Levin Density waves and jet emission asymmetry in Bose fireworks, Phys. Rev. Lett., Volume 121 (2018), 243001, 5 pages | DOI

[14] K. Kwon; K. Mukherjee; S. J. Huh; K. Kim; S. I. Mistakidis; D. K. Maity; P. G. Kevrekidis; S. Majumder; P. Schmelcher; J.-y. Choi Spontaneous formation of star-shaped surface patterns in a driven Bose–Einstein condensate, Phys. Rev. Lett., Volume 127 (2021), 113001, 7 pages | DOI

[15] Zhendong Zhang; Kai-Xuan Yao; Lei Feng; Jiazhong Hu; Cheng Chin Pattern formation in a driven Bose–Einstein condensate, Nat. Phys., Volume 16 (2020) no. 6, pp. 652-656 | DOI

[16] Nikolas Liebster; Marius Sparn; Elinor Kath; Jelte Duchene; Keisuke Fujii; Sarah L. Görlitz; Tilman Enss; Helmut Strobel; Markus K. Oberthaler Observation of pattern stabilization in a driven superfluid, Phys. Rev. X, Volume 15 (2025), 011026, 11 pages | DOI

[17] Victor Gondret; Clothilde Lamirault; Rui Dias; Léa Camier; Amaury Micheli; Charlie Leprince; Quentin Marolleau; Jean-René Rullier; Scott Robertson; Denis Boiron; Christoph I. Westbrook Observation of entanglement in a cold atom analog of cosmological preheating (2025) | arXiv

[18] Pablo Capuzzi; Patrizia Vignolo Faraday waves in elongated superfluid fermionic clouds, Phys. Rev. A, Volume 78 (2008), 043613, 6 pages | DOI

[19] Diego Hernández-Rajkov; José Eduardo Padilla-Castillo; Alejandra del Río-Lima; Andrés Gutiérrez-Valdés; Freddy Jackson Poveda-Cuevas; Jorge Amin Seman Faraday waves in strongly interacting superfluids, New J. Phys., Volume 23 (2021) no. 10, 103038, 15 pages | DOI

[20] R. Cominotti; A. Berti; A. Farolfi; A. Zenesini; G. Lamporesi; Iacopo Carusotto; A. Recati; G. Ferrari Observation of massless and massive collective excitations with Faraday patterns in a two-component superfluid, Phys. Rev. Lett., Volume 128 (2022), 210401, 6 pages | DOI

[21] Kazimierz Łakomy; Rejish Nath; Luis Santos Faraday patterns in coupled one-dimensional dipolar condensates, Phys. Rev. A, Volume 86 (2012), 023620, 6 pages | DOI

[22] Pablo Capuzzi; Mario Gattobigio; Patrizia Vignolo Suppression of Faraday waves in a Bose–Einstein condensate in the presence of an optical lattice, Phys. Rev. A, Volume 83 (2011), 013603, 6 pages | DOI

[23] Nathan Dupont; Lucas Gabardos; Floriane Arrouas; Gabriel Chatelain; Maxime Arnal; Juliette Billy; Peter Schlagheck; Bruno Peaudecerf; David Guéry-Odelin Emergence of tunable periodic density correlations in a Floquet–Bloch system, Proc. Natl. Acad. Sci. USA, Volume 120 (2023) no. 32, e2300980120, 5 pages | DOI

[24] William G. Unruh Experimental black-hole evaporation?, Phys. Rev. Lett., Volume 46 (1981), pp. 1351-1353 | DOI

[25] Carlos Barceló; Stefano Liberati; Matt Visser Analogue gravity, Living Rev. Relativ., Volume 14 (2011) no. 1, 3, 159 pages | DOI | Zbl

[26] Ralf Schützhold Ultra-cold atoms as quantum simulators for relativistic phenomena, Prog. Part. Nucl. Phys., Volume 145 (2025), 104198, 49 pages | DOI

[27] L. J. Garay; J. R. Anglin; J. I. Cirac; P. Zoller Sonic analog of gravitational black holes in Bose–Einstein condensates, Phys. Rev. Lett., Volume 85 (2000), pp. 4643-4647 | DOI

[28] Petr O. Fedichev; Uwe R. Fischer “Cosmological” quasiparticle production in harmonically trapped superfluid gases, Phys. Rev. A, Volume 69 (2004), 033602, 8 pages | DOI

[29] Uwe R. Fischer; Ralf Schützhold Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates, Phys. Rev. A, Volume 70 (2004), 063615, 8 pages | DOI

[30] Michael Uhlmann; Yan Xu; Ralf Schützhold Aspects of cosmic inflation in expanding Bose–Einstein condensates, New J. Phys., Volume 7 (2005) no. 1, 248, 17 pages | DOI

[31] Piyush Jain; Silke Weinfurtner; Matt Visser; C. W. Gardiner Analog model of a Friedmann–Robertson–Walker universe in Bose–Einstein condensates: application of the classical field method, Phys. Rev. A, Volume 76 (2007), 033616, 24 pages | DOI

[32] Iacopo Carusotto; R. Balbinot; A. Fabbri; A. Recati Density correlations and analog dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose–Einstein condensates, Eur. Phys. J. D, Atomic Mol. Opt. Plasma Phys., Volume 56 (2010) no. 3, pp. 391-404 | DOI

[33] Zehua Tian; Seok-Yeong Chä; Uwe R. Fischer Roton entanglement in quenched dipolar Bose–Einstein condensates, Phys. Rev. A, Volume 97 (2018), 063611, 12 pages | DOI

[34] Jean Macher; Renaud Parentani Black-hole radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009), 043601, 26 pages | DOI

[35] Xavier Busch; Renaud Parentani Dynamical Casimir effect in dissipative media: when is the final state nonseparable?, Phys. Rev. D, Volume 88 (2013), 045023, 14 pages | DOI

[36] Xavier Busch; Renaud Parentani; Scott Robertson Quantum entanglement due to a modulated dynamical Casimir effect, Phys. Rev. A, Volume 89 (2014), 063606, 10 pages | DOI

[37] Scott Robertson; Florent Michel; Renaud Parentani Controlling and observing nonseparability of phonons created in time-dependent 1D atomic Bose condensates, Phys. Rev. D, Volume 95 (2017), 065020, 22 pages | DOI

[38] Scott Robertson; Florent Michel; Renaud Parentani Assessing degrees of entanglement of phonon states in atomic Bose gases through the measurement of commuting observables, Phys. Rev. D, Volume 96 (2017), 045012, 16 pages | DOI

[39] C. M. Wilson; G. Johansson; A. Pourkabirian; M. Simoen; J. R. Johansson; T. Duty; F. Nori; P. Delsing Observation of the dynamical Casimir effect in a superconducting circuit, Nature, Volume 479 (2011) no. 7373, pp. 376-379 | DOI

[40] J.-C. Jaskula; G. B. Partridge; M. Bonneau; R. Lopes; J. Ruaudel; Denis Boiron; Christoph I. Westbrook Acoustic analog to the dynamical Casimir effect in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012), 220401, 5 pages | DOI

[41] Pasi Lähteenmäki; G. S. Paraoanu; Juha Hassel; Pertti J. Hakonen Dynamical Casimir effect in a Josephson metamaterial, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 11, pp. 4234-4238 | DOI

[42] Stefano Vezzoli; Arnaud Mussot; Niclas Westerberg; Alexandre Kudlinski; Hatef Dinparasti Saleh; Angus Prain; Fabio Biancalana; Eric Lantz; Daniele Faccio Optical analogue of the dynamical Casimir effect in a dispersion-oscillating fibre, Commun. Phys., Volume 2 (2019) no. 1, 84, 6 pages | DOI

[43] Jiazhong Hu; Lei Feng; Zhendong Zhang; Cheng Chin Quantum simulation of Unruh radiation, Nat. Phys., Volume 15 (2019) no. 8, pp. 785-789 | DOI

[44] Cheng-An Chen; Sergei Khlebnikov; Chen-Lung Hung Observation of quasiparticle pair production and quantum entanglement in atomic quantum gases quenched to an attractive interaction, Phys. Rev. Lett., Volume 127 (2021), 060404, 6 pages | DOI

[45] Celia Viermann; Marius Sparn; Nikolas Liebster; Maurus Hans; Elinor Kath; Álvaro Parra-López; Mireia Tolosa-Simeón; Natalia Sánchez-Kuntz; Tobias Haas; Helmut Strobel; Stefan Floerchinger; Markus K. Oberthaler Quantum field simulator for dynamics in curved spacetime, Nature, Volume 611 (2022) no. 7935, pp. 260-264 | DOI

[46] Jeff Steinhauer; Murad Abuzarli; Tangui Aladjidi; Tom Bienaimé; Clara Piekarski; Wei Liu; Elisabeth Giacobino; Alberto Bramati; Quentin Glorieux Analogue cosmological particle creation in an ultracold quantum fluid of light, Nat. Commun., Volume 13 (2022) no. 1, 2890, 7 pages | DOI

[47] Marius Sparn; Elinor Kath; Nikolas Liebster; Jelte Duchene; Christian F. Schmidt; Mireia Tolosa-Simeón; Álvaro Parra-López; Stefan Floerchinger; Helmut Strobel; Markus K. Oberthaler Experimental particle production in time-dependent spacetimes: a one-dimensional scattering problem, Phys. Rev. Lett., Volume 133 (2024), 260201, 6 pages | DOI

[48] Thomas G. Philbin; Chris Kuklewicz; Scott Robertson; Stephen Hill; Friedrich König; Ulf Leonhardt Fiber-optical analog of the event horizon, Science, Volume 319 (2008) no. 5868, pp. 1367-1370 | DOI

[49] Silke Weinfurtner; Edmund W. Tedford; Matthew C. J. Penrice; William G. Unruh; Gregory A. Lawrence Measurement of stimulated Hawking emission in an analogue system, Phys. Rev. Lett., Volume 106 (2011), 021302, 4 pages | DOI

[50] Jeff Steinhauer Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016) no. 10, pp. 959-965 | DOI

[51] L.-P. Euvé; Florent Michel; Renaud Parentani; Thomas G. Philbin; G. Rousseaux Observation of noise correlated by the Hawking effect in a water tank, Phys. Rev. Lett., Volume 117 (2016), 121301, 5 pages | DOI

[52] Juan Ramón Muñoz De Nova; Katrine Golubkov; Victor I. Kolobov; Jeff Steinhauer Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019) no. 7758, pp. 688-691 | DOI

[53] Jonathan Drori; Yuval Rosenberg; David Bermudez; Yaron Silberberg; Ulf Leonhardt Observation of stimulated Hawking radiation in an optical analogue, Phys. Rev. Lett., Volume 122 (2019), 010404, 6 pages | DOI

[54] Patrik Švančara; Pietro Smaniotto; Leonardo Solidoro; James F. MacDonald; Sam Patrick; Ruth Gregory; Carlo F. Barenghi; Silke Weinfurtner Rotating curved spacetime signatures from a giant quantum vortex, Nature, Volume 628 (2024) no. 8006, pp. 66-70 | DOI

[55] Kévin Falque; Adrià Delhom; Quentin Glorieux; Elisabeth Giacobino; Alberto Bramati; Maxime J. Jacquet Polariton fluids as quantum field theory simulators on tailored curved spacetimes, Phys. Rev. Lett., Volume 135 (2025), 023401, 7 pages | DOI

[56] F. Chevy; V. Bretin; P. Rosenbusch; K. W. Madison; J. Dalibard Transverse breathing mode of an elongated Bose–Einstein condensate, Phys. Rev. Lett., Volume 88 (2002), 250402, 4 pages | DOI

[57] B. Jackson; E. Zaremba Accidental suppression of Landau damping of the transverse breathing mode in elongated Bose–Einstein condensates, Phys. Rev. Lett., Volume 89 (2002), 150402, 4 pages | DOI

[58] L. Pitaevskii; Sandro Stringari Elementary excitations in trapped Bose–Einstein condensed gases beyond the mean-field approximation, Phys. Rev. Lett., Volume 81 (1998), pp. 4541-4544 | DOI

[59] R. Lopes; A. Imanaliev; A. Aspect; M. Cheneau; Denis Boiron; Christoph I. Westbrook Atomic Hong–Ou–Mandel experiment, Nature, Volume 520 (2015) no. 7545, pp. 66-68 | DOI

[60] Charlie Leprince; Victor Gondret; Clothilde Lamirault; Rui Dias; Quentin Marolleau; Denis Boiron; Christoph I. Westbrook Coherent coupling of momentum states: selectivity and phase control, Phys. Rev. A, Volume 111 (2025), 063304, 7 pages | DOI

[61] Amaury Micheli; Scott Robertson Phonon decay in one-dimensional atomic Bose quasicondensates via Beliaev–Landau damping, Phys. Rev. B, Volume 106 (2022), 214528, 23 pages | DOI

[62] Salvatore Butera; David Clément; Iacopo Carusotto Position- and momentum-space two-body correlations in a weakly interacting trapped condensate, Phys. Rev. A, Volume 103 (2021), 013302, 12 pages | DOI

[63] Fabrice Gerbier Quasi-1D Bose–Einstein condensates in the dimensional crossover regime, Europhys. Lett., Volume 66 (2004) no. 6, pp. 771-777 | DOI

[64] L. Salasnich; A. Parola; L. Reatto Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates, Phys. Rev. A, Volume 65 (2002), 043614, 6 pages | DOI

[65] C. Tozzo; F. Dalfovo Phonon evaporation in freely expanding Bose–Einstein condensates, Phys. Rev. A, Volume 69 (2004), 053606, 12 pages | DOI

[66] Amaury Micheli; Scott Robertson Dissipative parametric resonance in a modulated 1D Bose gas, Comptes Rendus. Physique (2024), pp. 1-34 (Online first) | DOI

[67] S. Tung; G. Lamporesi; D. Lobser; L. Xia; E. A. Cornell Observation of the presuperfluid regime in a two-dimensional Bose gas, Phys. Rev. Lett., Volume 105 (2010), 230408, 4 pages | DOI

[68] P. A. Murthy; D. Kedar; T. Lompe; M. Neidig; M. G. Ries; A. N. Wenz; G. Zürn; S. Jochim Matter-wave Fourier optics with a strongly interacting two-dimensional Fermi gas, Phys. Rev. A, Volume 90 (2014), 043611, 6 pages | DOI

[69] Álvaro Álvarez-Domínguez; Álvaro Parra-López The relevance of “on” and “off” transitions in quantum pair production experiments (2025) | arXiv

[70] Antoine Tenart; Gaétan Hercé; Jan-Philipp Bureik; Alexandre Dareau; David Clément Observation of pairs of atoms at opposite momenta in an equilibrium interacting Bose gas, Nat. Phys., Volume 17 (2021) no. 12, pp. 1364-1368 | DOI

[72] Victor Gondret; Clothilde Lamirault; Rui Dias; Charlie Leprince; Christoph I. Westbrook; David Clément; Denis Boiron Quantifying two-mode entanglement of bosonic Gaussian states from their full counting statistics, Phys. Rev. Lett., Volume 135 (2025), 100201, 9 pages | DOI

[73] Chiara Menotti; Sandro Stringari Collective oscillations of a one-dimensional trapped Bose–Einstein gas, Phys. Rev. A, Volume 66 (2002), 043610, 6 pages | DOI

[74] Nikolay Bogoliubov On the theory of superfluidity, J. Physics, Volume XI (1947) no. 1, pp. 23-32

[75] L. P. Pitaevskiĭ; Sandro Stringari Bose–Einstein condensation and superfluidity, International Series of Monographs on Physics, Oxford University Press, 2016 no. 164 | DOI

[76] Christophe Mora; Yvan Castin Extension of Bogoliubov theory to quasicondensates, Phys. Rev. A, Volume 67 (2003), 053615, 24 pages | DOI

Cité par Sources :

Commentaires - Politique