[Production paramétrique de paires d’excitations collectives dans un condensat de Bose–Einstein]
By exciting the transverse breathing mode of an elongated Bose–Einstein condensate, we parametrically produce longitudinal collective excitations in a pairwise manner. This process, also referred to as Faraday wave generation, can be seen as an analog to cosmological particle production. Building upon single particle detection, we investigate the early time dynamics of the exponential growth and compare our observations with a Bogoliubov description. The growth rate we observe experimentally is in very good agreement with theoretical predictions, demonstrating the validity of the Bogoliubov description and thereby confirming the smallness of quasiparticle interactions in such an elongated gas. We also discuss the presence of oscillations in the atom number, which are due to pair correlations and to the rate at which interactions are switched off.
Nous excitons le mode de respiration transverse d’un condensat de Bose–Einstein allongé afin de générer, de manière paramétrique, des paires d’excitations collectives longitudinales. Ce processus, souvent dénommé instabilité de Faraday, peut également être interprété comme analogue à la production cosmologique de particules. Dans ce travail, nous tirons parti de notre système capable de détecter un atome unique pour étudier le développement du motif généré et sa croissance exponentielle. Nous comparons nos observations à celles prédites par la théorie de Bogoliubov pour un système homogène. Le taux de croissance que nous mesurons expérimentalement est en très bon accord avec celui prédit théoriquement, ce qui confirme la validité de la description du système via la théorie de Bogoliubov ainsi que la faiblesse des interactions entre quasiparticules dans un condensat très allongé. Nous discutons également de la présence d’oscillations dans le nombre d’atomes détectés, résultant du processus de création par paires et du temps mis pour éteindre les interactions interatomiques.
Révisé le :
Accepté le :
Première publication :
Mots-clés : Amplification paramétrique, condensat de Bose–Einstein, ondes de Faraday, quasiparticules, excitations collectives, gravité analogue, univers primordial
Victor Gondret 1 ; Rui Dias 1 ; Clothilde Lamirault 1 ; Léa Camier 1 ; Amaury Micheli 2 ; Charlie Leprince 1 ; Quentin Marolleau 1 ; Scott Robertson 3 ; Denis Boiron 1 ; Christoph I. Westbrook 1
CC-BY 4.0
@article{CRPHYS_2024__25_S2_A19_0,
author = {Victor Gondret and Rui Dias and Clothilde Lamirault and L\'ea Camier and Amaury Micheli and Charlie Leprince and Quentin Marolleau and Scott Robertson and Denis Boiron and Christoph I. Westbrook},
title = {Parametric pair production of collective excitations in a {Bose{\textendash}Einstein} condensate},
journal = {Comptes Rendus. Physique},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
doi = {10.5802/crphys.266},
language = {en},
note = {Online first},
}
TY - JOUR AU - Victor Gondret AU - Rui Dias AU - Clothilde Lamirault AU - Léa Camier AU - Amaury Micheli AU - Charlie Leprince AU - Quentin Marolleau AU - Scott Robertson AU - Denis Boiron AU - Christoph I. Westbrook TI - Parametric pair production of collective excitations in a Bose–Einstein condensate JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.266 LA - en ID - CRPHYS_2024__25_S2_A19_0 ER -
%0 Journal Article %A Victor Gondret %A Rui Dias %A Clothilde Lamirault %A Léa Camier %A Amaury Micheli %A Charlie Leprince %A Quentin Marolleau %A Scott Robertson %A Denis Boiron %A Christoph I. Westbrook %T Parametric pair production of collective excitations in a Bose–Einstein condensate %J Comptes Rendus. Physique %D 2024 %V 25 %N S2 %I Académie des sciences, Paris %Z Online first %R 10.5802/crphys.266 %G en %F CRPHYS_2024__25_S2_A19_0
Victor Gondret; Rui Dias; Clothilde Lamirault; Léa Camier; Amaury Micheli; Charlie Leprince; Quentin Marolleau; Scott Robertson; Denis Boiron; Christoph I. Westbrook. Parametric pair production of collective excitations in a Bose–Einstein condensate. Comptes Rendus. Physique, Online first (2024), pp. 1-15. doi: 10.5802/crphys.266
[1] Reheating after inflation, Phys. Rev. Lett., Volume 73 (1994), pp. 3195-3198 | DOI
[2] On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Philos. Trans. R. Soc. Lond., Volume 121 (1831), pp. 299-340 | DOI
[3] Parametrically forced surface waves, Ann. Rev. Fluid Mech., Volume 22 (1990), pp. 143-165 | DOI
[4] Patterns and quasi-patterns in the Faraday experiment, J. Fluid Mech., Volume 278 (1994), pp. 123-148 | DOI
[5] Faraday patterns in Bose–Einstein condensates, Phys. Rev. Lett., Volume 89 (2002), 210406, 4 pages | DOI
[6] Faraday waves in Bose–Einstein condensates — The excitation by the modulation of the interaction and the potential, J. Phys. Soc. Japan, Volume 92 (2023) no. 6, 064602, 8 pages | DOI
[7] Observation of Faraday waves in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 98 (2007), 095301, 4 pages | DOI
[8] Faraday waves in Bose–Einstein condensates, Phys. Rev. A, Volume 76 (2007), 063609, 10 pages | DOI
[9] Parametric excitation of a Bose–Einstein condensate: from Faraday waves to granulation, Phys. Rev. X, Volume 9 (2019), 011052, 11 pages | DOI
[10] Observation of a space-time crystal in a superfluid quantum gas, Phys. Rev. Lett., Volume 121 (2018), 185301, 5 pages | DOI
[11] Spontaneous breaking of a discrete time-translation symmetry, Phys. Rev. A, Volume 104 (2021), 023318, 8 pages | DOI
[12] On the long-term stability of space-time crystals, New J. Phys., Volume 22 (2020) no. 10, 105001, 9 pages | DOI
[13] Density waves and jet emission asymmetry in Bose fireworks, Phys. Rev. Lett., Volume 121 (2018), 243001, 5 pages | DOI
[14] Spontaneous formation of star-shaped surface patterns in a driven Bose–Einstein condensate, Phys. Rev. Lett., Volume 127 (2021), 113001, 7 pages | DOI
[15] Pattern formation in a driven Bose–Einstein condensate, Nat. Phys., Volume 16 (2020) no. 6, pp. 652-656 | DOI
[16] Observation of pattern stabilization in a driven superfluid, Phys. Rev. X, Volume 15 (2025), 011026, 11 pages | DOI
[17] Observation of entanglement in a cold atom analog of cosmological preheating (2025) | arXiv
[18] Faraday waves in elongated superfluid fermionic clouds, Phys. Rev. A, Volume 78 (2008), 043613, 6 pages | DOI
[19] Faraday waves in strongly interacting superfluids, New J. Phys., Volume 23 (2021) no. 10, 103038, 15 pages | DOI
[20] Observation of massless and massive collective excitations with Faraday patterns in a two-component superfluid, Phys. Rev. Lett., Volume 128 (2022), 210401, 6 pages | DOI
[21] Faraday patterns in coupled one-dimensional dipolar condensates, Phys. Rev. A, Volume 86 (2012), 023620, 6 pages | DOI
[22] Suppression of Faraday waves in a Bose–Einstein condensate in the presence of an optical lattice, Phys. Rev. A, Volume 83 (2011), 013603, 6 pages | DOI
[23] Emergence of tunable periodic density correlations in a Floquet–Bloch system, Proc. Natl. Acad. Sci. USA, Volume 120 (2023) no. 32, e2300980120, 5 pages | DOI
[24] Experimental black-hole evaporation?, Phys. Rev. Lett., Volume 46 (1981), pp. 1351-1353 | DOI
[25] Analogue gravity, Living Rev. Relativ., Volume 14 (2011) no. 1, 3, 159 pages | DOI | Zbl
[26] Ultra-cold atoms as quantum simulators for relativistic phenomena, Prog. Part. Nucl. Phys., Volume 145 (2025), 104198, 49 pages | DOI
[27] Sonic analog of gravitational black holes in Bose–Einstein condensates, Phys. Rev. Lett., Volume 85 (2000), pp. 4643-4647 | DOI
[28] “Cosmological” quasiparticle production in harmonically trapped superfluid gases, Phys. Rev. A, Volume 69 (2004), 033602, 8 pages | DOI
[29] Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates, Phys. Rev. A, Volume 70 (2004), 063615, 8 pages | DOI
[30] Aspects of cosmic inflation in expanding Bose–Einstein condensates, New J. Phys., Volume 7 (2005) no. 1, 248, 17 pages | DOI
[31] Analog model of a Friedmann–Robertson–Walker universe in Bose–Einstein condensates: application of the classical field method, Phys. Rev. A, Volume 76 (2007), 033616, 24 pages | DOI
[32] Density correlations and analog dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose–Einstein condensates, Eur. Phys. J. D, Atomic Mol. Opt. Plasma Phys., Volume 56 (2010) no. 3, pp. 391-404 | DOI
[33] Roton entanglement in quenched dipolar Bose–Einstein condensates, Phys. Rev. A, Volume 97 (2018), 063611, 12 pages | DOI
[34] Black-hole radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009), 043601, 26 pages | DOI
[35] Dynamical Casimir effect in dissipative media: when is the final state nonseparable?, Phys. Rev. D, Volume 88 (2013), 045023, 14 pages | DOI
[36] Quantum entanglement due to a modulated dynamical Casimir effect, Phys. Rev. A, Volume 89 (2014), 063606, 10 pages | DOI
[37] Controlling and observing nonseparability of phonons created in time-dependent 1D atomic Bose condensates, Phys. Rev. D, Volume 95 (2017), 065020, 22 pages | DOI
[38] Assessing degrees of entanglement of phonon states in atomic Bose gases through the measurement of commuting observables, Phys. Rev. D, Volume 96 (2017), 045012, 16 pages | DOI
[39] Observation of the dynamical Casimir effect in a superconducting circuit, Nature, Volume 479 (2011) no. 7373, pp. 376-379 | DOI
[40] Acoustic analog to the dynamical Casimir effect in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012), 220401, 5 pages | DOI
[41] Dynamical Casimir effect in a Josephson metamaterial, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 11, pp. 4234-4238 | DOI
[42] Optical analogue of the dynamical Casimir effect in a dispersion-oscillating fibre, Commun. Phys., Volume 2 (2019) no. 1, 84, 6 pages | DOI
[43] Quantum simulation of Unruh radiation, Nat. Phys., Volume 15 (2019) no. 8, pp. 785-789 | DOI
[44] Observation of quasiparticle pair production and quantum entanglement in atomic quantum gases quenched to an attractive interaction, Phys. Rev. Lett., Volume 127 (2021), 060404, 6 pages | DOI
[45] Quantum field simulator for dynamics in curved spacetime, Nature, Volume 611 (2022) no. 7935, pp. 260-264 | DOI
[46] Analogue cosmological particle creation in an ultracold quantum fluid of light, Nat. Commun., Volume 13 (2022) no. 1, 2890, 7 pages | DOI
[47] Experimental particle production in time-dependent spacetimes: a one-dimensional scattering problem, Phys. Rev. Lett., Volume 133 (2024), 260201, 6 pages | DOI
[48] Fiber-optical analog of the event horizon, Science, Volume 319 (2008) no. 5868, pp. 1367-1370 | DOI
[49] Measurement of stimulated Hawking emission in an analogue system, Phys. Rev. Lett., Volume 106 (2011), 021302, 4 pages | DOI
[50] Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016) no. 10, pp. 959-965 | DOI
[51] Observation of noise correlated by the Hawking effect in a water tank, Phys. Rev. Lett., Volume 117 (2016), 121301, 5 pages | DOI
[52] Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019) no. 7758, pp. 688-691 | DOI
[53] Observation of stimulated Hawking radiation in an optical analogue, Phys. Rev. Lett., Volume 122 (2019), 010404, 6 pages | DOI
[54] Rotating curved spacetime signatures from a giant quantum vortex, Nature, Volume 628 (2024) no. 8006, pp. 66-70 | DOI
[55] Polariton fluids as quantum field theory simulators on tailored curved spacetimes, Phys. Rev. Lett., Volume 135 (2025), 023401, 7 pages | DOI
[56] Transverse breathing mode of an elongated Bose–Einstein condensate, Phys. Rev. Lett., Volume 88 (2002), 250402, 4 pages | DOI
[57] Accidental suppression of Landau damping of the transverse breathing mode in elongated Bose–Einstein condensates, Phys. Rev. Lett., Volume 89 (2002), 150402, 4 pages | DOI
[58] Elementary excitations in trapped Bose–Einstein condensed gases beyond the mean-field approximation, Phys. Rev. Lett., Volume 81 (1998), pp. 4541-4544 | DOI
[59] Atomic Hong–Ou–Mandel experiment, Nature, Volume 520 (2015) no. 7545, pp. 66-68 | DOI
[60] Coherent coupling of momentum states: selectivity and phase control, Phys. Rev. A, Volume 111 (2025), 063304, 7 pages | DOI
[61] Phonon decay in one-dimensional atomic Bose quasicondensates via Beliaev–Landau damping, Phys. Rev. B, Volume 106 (2022), 214528, 23 pages | DOI
[62] Position- and momentum-space two-body correlations in a weakly interacting trapped condensate, Phys. Rev. A, Volume 103 (2021), 013302, 12 pages | DOI
[63] Quasi-1D Bose–Einstein condensates in the dimensional crossover regime, Europhys. Lett., Volume 66 (2004) no. 6, pp. 771-777 | DOI
[64] Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates, Phys. Rev. A, Volume 65 (2002), 043614, 6 pages | DOI
[65] Phonon evaporation in freely expanding Bose–Einstein condensates, Phys. Rev. A, Volume 69 (2004), 053606, 12 pages | DOI
[66] Dissipative parametric resonance in a modulated 1D Bose gas, Comptes Rendus. Physique (2024), pp. 1-34 (Online first) | DOI
[67] Observation of the presuperfluid regime in a two-dimensional Bose gas, Phys. Rev. Lett., Volume 105 (2010), 230408, 4 pages | DOI
[68] Matter-wave Fourier optics with a strongly interacting two-dimensional Fermi gas, Phys. Rev. A, Volume 90 (2014), 043611, 6 pages | DOI
[69] The relevance of “on” and “off” transitions in quantum pair production experiments (2025) | arXiv
[70] Observation of pairs of atoms at opposite momenta in an equilibrium interacting Bose gas, Nat. Phys., Volume 17 (2021) no. 12, pp. 1364-1368 | DOI
[72] Quantifying two-mode entanglement of bosonic Gaussian states from their full counting statistics, Phys. Rev. Lett., Volume 135 (2025), 100201, 9 pages | DOI
[73] Collective oscillations of a one-dimensional trapped Bose–Einstein gas, Phys. Rev. A, Volume 66 (2002), 043610, 6 pages | DOI
[74] On the theory of superfluidity, J. Physics, Volume XI (1947) no. 1, pp. 23-32
[75] Bose–Einstein condensation and superfluidity, International Series of Monographs on Physics, Oxford University Press, 2016 no. 164 | DOI
[76] Extension of Bogoliubov theory to quasicondensates, Phys. Rev. A, Volume 67 (2003), 053615, 24 pages | DOI
Cité par Sources :
Commentaires - Politique
