Comptes Rendus
Article de recherche
Dissipative parametric resonance in a modulated 1D Bose gas
[Résonance paramétrique dissipative dans un gaz de Bose 1D modulé]
Comptes Rendus. Physique, Online first (2024), pp. 1-34.

We synthesize results of previous works to give a coherent and self-consistent account of parametric resonance in a modulated quasi-1D Bose gas in the presence of a dissipative mechanism. The resonant behaviour is shown to be largely in line with the predictions of a phenomenological model published in 2014, while the associated dissipation rate is consistent with that derived in 2022 from three-wave mixing processes between the produced quasiparticles and thermal fluctuations. Particular emphasis is put on the evolution of entanglement for opposite momenta quasiparticles which is a signature of their vacuum origin.

Nous synthétisons les résultats de travaux antérieurs pour produire une présentation cohérente et auto-contenue du processus de résonance paramétrique dans un gaz de Bose quasi-1D modulé, en présence de dissipation. Nous démontrons que le déroulement du processus est en très bon accord avec les prédictions d’un modèle phénoménologique publié en 2014. De plus, nous montrons que le taux de dissipation associé est consistant avec celui dérivé en 2022 à partir de l’étude de processus de mélange à trois ondes entre les quasi-particules produites par la modulation et les fluctuations thermiques du gaz. Une attention particulière est portée à l’évolution de l’intrication entre quasi-particules d’impulsion opposées qui est une signature de leur génération à partir du vide.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.250
Keywords: Parametric resonance, Bipartite entanglement, Dissipation
Mots-clés : Résonance paramétrique, Intrication bipartite, Dissipation

Amaury Micheli 1 ; Scott Robertson 2

1 RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, Saitama 351-0198, Japan
2 Institut Pprime, CNRS – Université de Poitiers – ISAE-ENSMA, Poitiers, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S2_A15_0,
     author = {Amaury Micheli and Scott Robertson},
     title = {Dissipative parametric resonance in a modulated {1D} {Bose} gas},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.250},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Amaury Micheli
AU  - Scott Robertson
TI  - Dissipative parametric resonance in a modulated 1D Bose gas
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.250
LA  - en
ID  - CRPHYS_2024__25_S2_A15_0
ER  - 
%0 Journal Article
%A Amaury Micheli
%A Scott Robertson
%T Dissipative parametric resonance in a modulated 1D Bose gas
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.250
%G en
%F CRPHYS_2024__25_S2_A15_0
Amaury Micheli; Scott Robertson. Dissipative parametric resonance in a modulated 1D Bose gas. Comptes Rendus. Physique, Online first (2024), pp. 1-34. doi : 10.5802/crphys.250.

[1] L. Parker Particle creation in expanding universes, Phys. Rev. Lett., Volume 21 (1968) no. 8, pp. 562-564 | DOI

[2] L. Kofman; A. Linde; A. Starobinsky Towards the theory of reheating after inflation, Phys. Rev. D, Volume 56 (1997) no. 6, pp. 3258-3295 | DOI

[3] C. M. Wilson; G. Johansson; A. Pourkabirian; M. Simoen; J. R. Johansson; T. Duty; F. Nori; P. Delsing Observation of the dynamical casimir effect in a superconducting circuit, Nature, Volume 479 (2011) no. 7373, pp. 376-379 | DOI

[4] P. Lähteenmäki; G. S. Paraoanu; J. Hassel; P. J. Hakonen Dynamical casimir effect in a Josephson metamaterial, Proc. Natl. Acad. Sci., Volume 110 (2013) no. 11, pp. 4234-4238 | DOI

[5] C. Barcelo; S. Liberati; M. Visser Analogue models for FRW cosmologies, Int. J. Mod. Phys. D, Volume 12 (2003) no. 09, pp. 1641-1649 | DOI

[6] C. Barcelo; S. Liberati; M. Visser Probing semiclassical analogue gravity in Bose–Einstein condensates with widely tunable interactions, Phys. Rev. A, Volume 68 (2003) no. 5, 053613 | DOI

[7] P. O. Fedichev; U. R. Fischer Gibbons–Hawking effect in the sonic de sitter space-time of an expanding Bose–Einstein-condensed gas, Phys. Rev. Lett., Volume 91 (2003) no. 24, 240407 | DOI

[8] P. O. Fedichev; U. R. Fischer Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose–Einstein condensate, Phys. Rev. D, Volume 69 (2004) no. 6, 064021 | DOI

[9] P. O. Fedichev; U. R. Fischer “Cosmological” quasiparticle production in harmonically trapped superfluid gases, Phys. Rev. A, Volume 69 (2004) no. 3, 033602 | DOI

[10] U. Fischer; R. Schützhold Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates, Phys. Rev. A, Volume 70 (2004) no. 6, 063615 | DOI

[11] P. Jain; S. Weinfurtner; M. Visser; C. W. Gardiner Analogue model of a FRW universe in Bose–Einstein condensates: application of the classical field method, Phys. Rev. A, Volume 76 (2007) no. 3, 033616 | DOI

[12] I. Carusotto; R. Balbinot; A. Fabbri; A. Recati Density correlations and dynamical casimir emission of bogoliubov phonons in modulated atomic Bose–Einstein condensates, Eur. Phys. J. D, Volume 56 (2010) no. 3, pp. 391-404 | DOI

[13] J.-C. Jaskula; G. B. Partridge; M. Bonneau; R. Lopes; J. Ruaudel; D. Boiron; C. I. Westbrook Acoustic analog to the dynamical casimir effect in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012) no. 22, 220401 | DOI

[14] S. Butera; I. Carusotto Particle creation in the spin modes of a dynamically oscillating two-component Bose–Einstein condensate, Phys. Rev. D, Volume 104 (2021) no. 8, 083503 | DOI

[15] S. Butera; I. Carusotto Numerical studies of back reaction effects in an analog model of cosmological preheating, Phys. Rev. Lett., Volume 130 (2023) no. 24, 241501 | DOI

[16] X. Busch; R. Parentani; S. Robertson Quantum entanglement due to modulated dynamical Casimir effect, Phys. Rev. A, Volume 89 (2014) no. 6, 063606 | DOI

[17] S. Finazzi; I. Carusotto Entangled phonons in atomic Bose–Einstein condensates, Phys. Rev. A, Volume 90 (2014) no. 3, 033607 | DOI

[18] V. F. Mukhanov; G. V. Chibisov Energy of vacuum and the large-scale structure of the universe, Zh. Eksp. Teor. Fiz., Volume 83 (1982), pp. 475-487

[19] L. P. Grishchuk; Y. V. Sidorov Squeezed quantum states of relic gravitons and primordial density fluctuations, Phys. Rev. D, Volume 42 (1990) no. 10, pp. 3413-3421 | DOI

[20] S. Robertson; F. Michel; R. Parentani Controlling and observing nonseparability of phonons created in time-dependent 1D atomic Bose condensates, Phys. Rev. D, Volume 95 (2017) no. 6, 065020 | DOI

[21] S. Robertson; F. Michel; R. Parentani Assessing degrees of entanglement of phonon states in atomic bose gases through the measurement of commuting observables, Phys. Rev. D, Volume 96 (2017) no. 4, 045012 | DOI

[22] S. Robertson; F. Michel; R. Parentani Nonlinearities induced by parametric resonance in effectively 1D atomic Bose condensates, Phys. Rev. D, Volume 98 (2018) no. 5, 056003 | DOI

[23] A. Micheli; S. Robertson Phonon decay in one-dimensional atomic Bose quasicondensates via Beliaev–Landau damping, Phys. Rev. B, Volume 106 (2022) no. 21, 214528 | DOI

[24] D. Campo; R. Parentani Inflationary spectra and partially decohered distributions, Phys. Rev. D, Volume 72 (2005) no. 4, 045015 | DOI

[25] R. F. Werner Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model, Phys. Rev. A, Volume 40 (1989) no. 8, pp. 4277-4281 | DOI | Zbl

[26] M. Hillery; M. S. Zubairy Entanglement conditions for two-mode states, Phys. Rev. Lett., Volume 96 (2006) no. 5, 050503 | DOI

[27] X. Busch; R. Parentani Dynamical Casimir effect in dissipative media: when is the final state nonseparable?, Phys. Rev. D, Volume 88 (2013) no. 4, 045023 | DOI

[28] A. Micheli Entanglement and decoherence in cosmology and in analogue gravity experiments, Ph. D. Thesis, Paris-Saclay University, Paris, France (2023) https://theses.hal.science/tel-04260012 | arXiv

[29] D. S. Petrov; D. M. Gangardt; G. V. Shlyapnikov Low-dimensional trapped gases, J. Phys. IV, Volume 116 (2004), pp. 5-44 | DOI

[30] C. Mora; Y. Castin Extension of Bogoliubov theory to quasi-condensates, Phys. Rev. A, Volume 67 (2003) no. 5, 053615 | DOI

[31] É. Mathieu Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique, J. Math. Appl., Volume 13 (1868), pp. 137-203 | Zbl

[32] I. Kovacic; R. Rand; S. Mohamed Sah Mathieu’s equation and its generalizations: overview of stability charts and their features, Appl. Mech. Rev., Volume 70 (2018) no. 2, 020802 | DOI

[33] C.-L. Hung; V. Gurarie; C. Chin From cosmology to cold atoms: observation of sakharov oscillations in a quenched atomic superfluid, Science, Volume 341 (2013) no. 6151, pp. 1213-1215 | DOI

[34] C. Viermann; M. Sparn; N. Liebster; M. Hans; E. Kath; A. Parra-López; M. Tolosa-Simeón; N. Sánchez-Kuntz et al. Quantum field simulator for dynamics in curved spacetime, Nature, Volume 611 (2022), pp. 260-264 | DOI

[35] S. Eckel; A. Kumar; T. Jacobson; I. B. Spielman; G. K. Campbell A rapidly expanding Bose–Einstein condensate: an expanding universe in the lab, Phys. Rev. X, Volume 8 (2018), 021021 | DOI

[36] P. J. Steinhardt; N. Turok Cosmic evolution in a cyclic universe, Phys. Rev. D, Volume 65 (2002) no. 12, 126003 | DOI

[37] R. Brandenberger; P. Peter Bouncing cosmologies: progress and problems, Found. Phys., Volume 47 (2017) no. 6, pp. 797-850 | DOI | Zbl

[38] D. E. Bruschi; N. Friis; I. Fuentes; S. Weinfurtner On the robustness of entanglement in analogue gravity systems, New J. Phys., Volume 15 (2013) no. 11, 113016 | DOI | Zbl

[39] P. Ziń; M. Pylak The influence of the interaction between quasiparticles on parametric resonance in Bose–Einstein condensates, J. Phys. B: At. Mol. Opt. Phys., Volume 50 (2017) no. 8, 085301 | DOI

[40] M. Pylak; P. Zin Influence of the interaction between quasiparticles on parametric resonance in Bose–Einstein quasicondensates, Phys. Rev. A, Volume 98 (2018) no. 4, 043603 | DOI

[41] T. V. Zache; V. Kasper; J. Berges Inflationary preheating dynamics with two-species condensates, Phys. Rev. A, Volume 95 (2017), 063629 | DOI

[42] E. A. Donley; N. R. Claussen; S. L. Cornish; J. L. Roberts; E. A. Cornell; C. E. Wieman Dynamics of collapsing and exploding Bose–Einstein condensates, Nature, Volume 412 (2001) no. 6844, pp. 295-299 | DOI

[43] E. Calzetta; B. L. Hu BEC collapse and dynamical squeezing of vacuum fluctuations, Phys. Rev. A, Volume 68 (2003) no. 4, 043625 | DOI

[44] E. A. Calzetta; B. L. Hu Early universe quantum processes in BEC collapse experiments, Int. J. Theor. Phys., Volume 44 (2005) no. 10, pp. 1691-1704 | DOI | Zbl

[45] C.-A. Chen; S. Khlebnikov; C.-L. Hung Observation of quasiparticle pair production and quantum entanglement in atomic quantum gases quenched to an attractive interaction, Phys. Rev. Lett., Volume 127 (2021) no. 6, 060404 | DOI

[46] A. Tenart; G. Hercé; J.-P. Bureik; A. Dareau; D. Clément Observation of pairs of atoms at opposite momenta in an equilibrium interacting Bose gas, Nat. Phys., Volume 17 (2021) no. 12, pp. 1364-1368 | DOI

[47] C. Tozzo; F. Dalfovo Phonon evaporation in freely expanding Bose–Einstein condensates, Phys. Rev. A, Volume 69 (2004) no. 5, 053606 | DOI

[48] S. Kasuya; M. Kawasaki Restriction to parametric resonant decay after inflation, Phys. Lett. B, Volume 388 (1996) no. 4, pp. 686-691 | DOI

[49] M. J. Steel; M. K. Olsen; L. I. Plimak; P. D. Drummond; S. M. Tan; M. J. Collett; D. F. Walls; R. Graham Dynamical quantum noise in trapped Bose–Einstein condensates, Phys. Rev. A, Volume 58 (1998) no. 6, pp. 4824-4835 | DOI

[50] R. B. Ash; C. Doléans-Dade Probability and Measure Theory, Harcourt/Academic Press [u.a.], Burlington, MA, 2007

[51] B. Efron Bootstrap methods: another look at the jackknife, Ann. Stat., Volume 7 (1979) no. 1, pp. 569-593 | DOI

Cité par Sources :

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: