[Résonance paramétrique dissipative dans un gaz de Bose 1D modulé]
We synthesize results of previous works to give a coherent and self-consistent account of parametric resonance in a modulated quasi-1D Bose gas in the presence of a dissipative mechanism. The resonant behaviour is shown to be largely in line with the predictions of a phenomenological model published in 2014, while the associated dissipation rate is consistent with that derived in 2022 from three-wave mixing processes between the produced quasiparticles and thermal fluctuations. Particular emphasis is put on the evolution of entanglement for opposite momenta quasiparticles which is a signature of their vacuum origin.
Nous synthétisons les résultats de travaux antérieurs pour produire une présentation cohérente et auto-contenue du processus de résonance paramétrique dans un gaz de Bose quasi-1D modulé, en présence de dissipation. Nous démontrons que le déroulement du processus est en très bon accord avec les prédictions d’un modèle phénoménologique publié en 2014. De plus, nous montrons que le taux de dissipation associé est consistant avec celui dérivé en 2022 à partir de l’étude de processus de mélange à trois ondes entre les quasi-particules produites par la modulation et les fluctuations thermiques du gaz. Une attention particulière est portée à l’évolution de l’intrication entre quasi-particules d’impulsion opposées qui est une signature de leur génération à partir du vide.
Révisé le :
Accepté le :
Première publication :
Mots-clés : Résonance paramétrique, Intrication bipartite, Dissipation
Amaury Micheli 1 ; Scott Robertson 2

@article{CRPHYS_2024__25_S2_A15_0, author = {Amaury Micheli and Scott Robertson}, title = {Dissipative parametric resonance in a modulated {1D} {Bose} gas}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.250}, language = {en}, note = {Online first}, }
Amaury Micheli; Scott Robertson. Dissipative parametric resonance in a modulated 1D Bose gas. Comptes Rendus. Physique, Online first (2024), pp. 1-34. doi : 10.5802/crphys.250.
[1] Particle creation in expanding universes, Phys. Rev. Lett., Volume 21 (1968) no. 8, pp. 562-564 | DOI
[2] Towards the theory of reheating after inflation, Phys. Rev. D, Volume 56 (1997) no. 6, pp. 3258-3295 | DOI
[3] Observation of the dynamical casimir effect in a superconducting circuit, Nature, Volume 479 (2011) no. 7373, pp. 376-379 | DOI
[4] Dynamical casimir effect in a Josephson metamaterial, Proc. Natl. Acad. Sci., Volume 110 (2013) no. 11, pp. 4234-4238 | DOI
[5] Analogue models for FRW cosmologies, Int. J. Mod. Phys. D, Volume 12 (2003) no. 09, pp. 1641-1649 | DOI
[6] Probing semiclassical analogue gravity in Bose–Einstein condensates with widely tunable interactions, Phys. Rev. A, Volume 68 (2003) no. 5, 053613 | DOI
[7] Gibbons–Hawking effect in the sonic de sitter space-time of an expanding Bose–Einstein-condensed gas, Phys. Rev. Lett., Volume 91 (2003) no. 24, 240407 | DOI
[8] Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose–Einstein condensate, Phys. Rev. D, Volume 69 (2004) no. 6, 064021 | DOI
[9] “Cosmological” quasiparticle production in harmonically trapped superfluid gases, Phys. Rev. A, Volume 69 (2004) no. 3, 033602 | DOI
[10] Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates, Phys. Rev. A, Volume 70 (2004) no. 6, 063615 | DOI
[11] Analogue model of a FRW universe in Bose–Einstein condensates: application of the classical field method, Phys. Rev. A, Volume 76 (2007) no. 3, 033616 | DOI
[12] Density correlations and dynamical casimir emission of bogoliubov phonons in modulated atomic Bose–Einstein condensates, Eur. Phys. J. D, Volume 56 (2010) no. 3, pp. 391-404 | DOI
[13] Acoustic analog to the dynamical casimir effect in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012) no. 22, 220401 | DOI
[14] Particle creation in the spin modes of a dynamically oscillating two-component Bose–Einstein condensate, Phys. Rev. D, Volume 104 (2021) no. 8, 083503 | DOI
[15] Numerical studies of back reaction effects in an analog model of cosmological preheating, Phys. Rev. Lett., Volume 130 (2023) no. 24, 241501 | DOI
[16] Quantum entanglement due to modulated dynamical Casimir effect, Phys. Rev. A, Volume 89 (2014) no. 6, 063606 | DOI
[17] Entangled phonons in atomic Bose–Einstein condensates, Phys. Rev. A, Volume 90 (2014) no. 3, 033607 | DOI
[18] Energy of vacuum and the large-scale structure of the universe, Zh. Eksp. Teor. Fiz., Volume 83 (1982), pp. 475-487
[19] Squeezed quantum states of relic gravitons and primordial density fluctuations, Phys. Rev. D, Volume 42 (1990) no. 10, pp. 3413-3421 | DOI
[20] Controlling and observing nonseparability of phonons created in time-dependent 1D atomic Bose condensates, Phys. Rev. D, Volume 95 (2017) no. 6, 065020 | DOI
[21] Assessing degrees of entanglement of phonon states in atomic bose gases through the measurement of commuting observables, Phys. Rev. D, Volume 96 (2017) no. 4, 045012 | DOI
[22] Nonlinearities induced by parametric resonance in effectively 1D atomic Bose condensates, Phys. Rev. D, Volume 98 (2018) no. 5, 056003 | DOI
[23] Phonon decay in one-dimensional atomic Bose quasicondensates via Beliaev–Landau damping, Phys. Rev. B, Volume 106 (2022) no. 21, 214528 | DOI
[24] Inflationary spectra and partially decohered distributions, Phys. Rev. D, Volume 72 (2005) no. 4, 045015 | DOI
[25] Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model, Phys. Rev. A, Volume 40 (1989) no. 8, pp. 4277-4281 | DOI | Zbl
[26] Entanglement conditions for two-mode states, Phys. Rev. Lett., Volume 96 (2006) no. 5, 050503 | DOI
[27] Dynamical Casimir effect in dissipative media: when is the final state nonseparable?, Phys. Rev. D, Volume 88 (2013) no. 4, 045023 | DOI
[28] Entanglement and decoherence in cosmology and in analogue gravity experiments, Ph. D. Thesis, Paris-Saclay University, Paris, France (2023) https://theses.hal.science/tel-04260012 | arXiv
[29] Low-dimensional trapped gases, J. Phys. IV, Volume 116 (2004), pp. 5-44 | DOI
[30] Extension of Bogoliubov theory to quasi-condensates, Phys. Rev. A, Volume 67 (2003) no. 5, 053615 | DOI
[31] Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique, J. Math. Appl., Volume 13 (1868), pp. 137-203 | Zbl
[32] Mathieu’s equation and its generalizations: overview of stability charts and their features, Appl. Mech. Rev., Volume 70 (2018) no. 2, 020802 | DOI
[33] From cosmology to cold atoms: observation of sakharov oscillations in a quenched atomic superfluid, Science, Volume 341 (2013) no. 6151, pp. 1213-1215 | DOI
[34] et al. Quantum field simulator for dynamics in curved spacetime, Nature, Volume 611 (2022), pp. 260-264 | DOI
[35] A rapidly expanding Bose–Einstein condensate: an expanding universe in the lab, Phys. Rev. X, Volume 8 (2018), 021021 | DOI
[36] Cosmic evolution in a cyclic universe, Phys. Rev. D, Volume 65 (2002) no. 12, 126003 | DOI
[37] Bouncing cosmologies: progress and problems, Found. Phys., Volume 47 (2017) no. 6, pp. 797-850 | DOI | Zbl
[38] On the robustness of entanglement in analogue gravity systems, New J. Phys., Volume 15 (2013) no. 11, 113016 | DOI | Zbl
[39] The influence of the interaction between quasiparticles on parametric resonance in Bose–Einstein condensates, J. Phys. B: At. Mol. Opt. Phys., Volume 50 (2017) no. 8, 085301 | DOI
[40] Influence of the interaction between quasiparticles on parametric resonance in Bose–Einstein quasicondensates, Phys. Rev. A, Volume 98 (2018) no. 4, 043603 | DOI
[41] Inflationary preheating dynamics with two-species condensates, Phys. Rev. A, Volume 95 (2017), 063629 | DOI
[42] Dynamics of collapsing and exploding Bose–Einstein condensates, Nature, Volume 412 (2001) no. 6844, pp. 295-299 | DOI
[43] BEC collapse and dynamical squeezing of vacuum fluctuations, Phys. Rev. A, Volume 68 (2003) no. 4, 043625 | DOI
[44] Early universe quantum processes in BEC collapse experiments, Int. J. Theor. Phys., Volume 44 (2005) no. 10, pp. 1691-1704 | DOI | Zbl
[45] Observation of quasiparticle pair production and quantum entanglement in atomic quantum gases quenched to an attractive interaction, Phys. Rev. Lett., Volume 127 (2021) no. 6, 060404 | DOI
[46] Observation of pairs of atoms at opposite momenta in an equilibrium interacting Bose gas, Nat. Phys., Volume 17 (2021) no. 12, pp. 1364-1368 | DOI
[47] Phonon evaporation in freely expanding Bose–Einstein condensates, Phys. Rev. A, Volume 69 (2004) no. 5, 053606 | DOI
[48] Restriction to parametric resonant decay after inflation, Phys. Lett. B, Volume 388 (1996) no. 4, pp. 686-691 | DOI
[49] Dynamical quantum noise in trapped Bose–Einstein condensates, Phys. Rev. A, Volume 58 (1998) no. 6, pp. 4824-4835 | DOI
[50] Probability and Measure Theory, Harcourt/Academic Press [u.a.], Burlington, MA, 2007
[51] Bootstrap methods: another look at the jackknife, Ann. Stat., Volume 7 (1979) no. 1, pp. 569-593 | DOI
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier