Comptes Rendus
Numerical modeling of downlink electromagnetic wave exposure generated by 5G beamforming antennas
Comptes Rendus. Physique, Volume 22 (2021) no. S1, pp. 15-24.

In this paper different scenarios were compared for the numerical modeling of electromagnetic wave exposure to beamforming antennas. These scenarios range from the simplest (using an average radiation pattern) to an almost realistic one (MU-MIMO beamforming taking into account user locations) with intermediate. The results underline the influence of the environment around the antennas on the distribution of the electric field.

Première publication :
Publié le :
DOI : 10.5802/crphys.61
Mots clés : 5G, Antenna, Beamforming, Exposure, Ray-tracing
Nicolas Noé 1 ; François Gaudaire 2

1 CSTB, Division Acoustique Vibration Éclairage et Électromagnétisme, Nantes, France
2 CSTB, Division Acoustique Vibration Éclairage et Électromagnétisme, Saint-Martin-d’Hères, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S1_15_0,
     author = {Nicolas No\'e and Fran\c{c}ois Gaudaire},
     title = {Numerical modeling of downlink electromagnetic wave exposure generated by {5G} beamforming antennas},
     journal = {Comptes Rendus. Physique},
     pages = {15--24},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S1},
     year = {2021},
     doi = {10.5802/crphys.61},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Noé
AU  - François Gaudaire
TI  - Numerical modeling of downlink electromagnetic wave exposure generated by 5G beamforming antennas
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 15
EP  - 24
VL  - 22
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.61
LA  - en
ID  - CRPHYS_2021__22_S1_15_0
ER  - 
%0 Journal Article
%A Nicolas Noé
%A François Gaudaire
%T Numerical modeling of downlink electromagnetic wave exposure generated by 5G beamforming antennas
%J Comptes Rendus. Physique
%D 2021
%P 15-24
%V 22
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.61
%G en
%F CRPHYS_2021__22_S1_15_0
Nicolas Noé; François Gaudaire. Numerical modeling of downlink electromagnetic wave exposure generated by 5G beamforming antennas. Comptes Rendus. Physique, Volume 22 (2021) no. S1, pp. 15-24. doi : 10.5802/crphys.61. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.61/

[1] S. Wang; J. Wiart Sensor-aided EMF exposure assessments in an urban environment using artificial neural networks, Int. J. Environ. Res. Public Health, Volume 17 (2020), 3052

[2] C. Regrain; J. Caudeville; R. de Seze; M. Guedda; A. Chobineh; P. Doncker; L. Petrillo; E. Chiaramello; M. Parazzini; W. Joseph; S. Aerts; A. Huss; J. Wiart Design of an integrated platform for mapping residential exposure to Rf-Emf sources, Int. J. Environ. Res. Public Health, Volume 17 (2020), 5339 | DOI

[3] P. Combeau; N. Noé; S. Joumessi; F. Gaudaire; J.-B. Dufour A numerical simulation system for mobile telephony base station EMF exposure using smartphones as probes and a genetic algorithm to improve accuracy, Prog. Electromagn. Res. B, Volume 87 (2020), pp. 111-129 | DOI

[4] S. Aerts; J. Wiart; L. Martens; W. Joseph Assessment of long-term spatio-temporal radiofrequency electromagnetic field exposure, Environ. Res., Volume 161 (2017), pp. 136-143 | DOI

[5] E. Degirmenci; B. Thors; C. Törnevik Assessment of compliance with RF EMF exposure limits: approximate methods for radio base station products utilizing array antennas with beam-forming capabilities, IEEE Trans. Electromag. Compat., Volume 58 (2016) no. 4, pp. 1110-1117 | DOI

[6] B. Thors; D. Colombi; Z. Ying; T. Bolin; C. Törnevik Exposure to RF EMF from array antennas in 5G mobile communication equipment, IEEE Access, Volume 4 (2016), pp. 7469-7478 | DOI

[7] B. Thors; A. Furuskär; D. Colombi; C. Törnevik Time-averaged realistic maximum power levels for the assessment of radio frequency exposure for 5G radio base stations using massive MIMO, IEEE Access, Volume 5 (2017), pp. 19711-19719 | DOI

[8] P. Baracca; A. Weber; T. Wild; C. Grangeat A statistical approach for RF exposure compliance boundary assessment in massive MIMO systems, WSA 2018; 22nd International ITG Workshop on Smart Antennas (Bochum, Germany, March 2018) (2018), pp. 1-6

[9] E. C. Commitee ECC Report 281: Analysis of the suitability of the regulatory technical conditions for 5G MFCN operation in the 3400–3800 MHz band (2018) (Technical report)

[10] N. Noé; F. Gaudaire; M. Diarra Bousso Lo Estimating and reducing uncertainties in ray-tracing techniques for electromagnetic field exposure in urban areas, 2013 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (Turin, Italy) (2013), pp. 652-655 | DOI

[11] ANFR Lignes directrices nationales sur la présentation des résultats de simulation de l’exposition aux ondes émises par les installations radioélectriques (October 2019) (https://www.anfr.fr/fileadmin/mediatheque/documents/expace/20191001-Lignes-directrices-nationales.pdf) (Technical report)

[12] N. S. G. Dimic On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm, IEEE Trans. Signal Process., Volume 53 (2015) no. 10, pp. 3857-3868 | DOI | MR

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A Simulation Method Suited for the Whole French Territory Electromagnetic Waves Exposure

Nicolas Noé; Lydia Sefsouf; Jean-Benoit Dufour; ...

C. R. Phys (2024)


Compatibility between EESS (passive) in band 23.6–24 GHz and 5G in band 24.25–27.5 GHz

Thibaut Caillet

C. R. Phys (2021)