[Passé, présent et futur des métamatériaux sismiques : expériences sur la dynamique des sols, camouflage, calculateur analogique à grande échelle et modulations spatio–temporelles]
Certaines propriétés des métamatériaux électromagnétiques ont été traduites, en utilisant certaines analogies d’ondes, en contrôle des ondes sismiques de surface dans des sols sédimentaires structurés à l’échelle du mètre. Deux expériences à grande échelle réalisées en 2012 près des villes françaises de Grenoble [] et Lyon [] ont confirmé l’utilité de cette méthodologie et son influence potentielle sur l’interaction sol-structure. Nous présentons ici une nouvelle perspective sur l’expérience in-situ menée près de Lyon, qui dévoile des couloirs d’énergie dans la lentille sismique. Nous introduisons en outre un concept de métamatériau sismique modulé dans le temps sous-tendu par un modèle effectif s’appuyant sur les équations de Willis. Dans une première application, nous proposons que le bruit sismique ambiant module dans le temps les sols structurés pouvant être considérés comme des milieux en mouvement. Dans le même esprit, il est proposé de concevoir un calculateur analogique sismique utilisant le bruit sismique ambiant. Nous rappelons que les anciens théâtres romains et les forêts d’arbres sont deux exemples de structures à grande échelle qui se comportent de manière similaire aux métamatériaux électromagnétiques : capes d’invisibilité et rainbows (anglicisme d’arcs-en-ciel), respectivement. Les métamatériaux sismiques peuvent donc non seulement être mis en œuvre pour des murailles, lentilles et capes pour ondes de Rayleigh potentiellement délétères, mais ils ont également des applications potentielles dans la récupération d’énergie et des ordinateurs analogiques utilisant le bruit sismique ambiant, ce qui ouvre de nouvelles perspectives dans la récupération et la conversion d’énergie sismique grâce à l’exploitation de structuration naturelle ou artificielle des sols.
Some properties of electromagnetic metamaterials have been translated, using some wave analogies, to surface seismic wave control in sedimentary soils structured at the meter scale. Two large scale experiments performed in 2012 near the French cities of Grenoble [] and Lyon [] have confirmed the usefulness of this methodology and its potential influence on soil-structure interaction. We present here a new perspective on the in-situ experiment near Lyon, which unveils energy corridors in the seismic lens. We further introduce a concept of time-modulated seismic metamaterial underpined by an effective model based on Willis’s equations. As a first application, we propose that ambient seismic noise time-modulates structured soils that can be viewed as moving media. In the same spirit, a design of an analogous seismic computer is proposed making use of ambient seismic noise. We recall that ancient Roman theaters and forests of trees are two examples of large scale structures that behave in a way similar to electromagnetic metamaterials: invisibility cloaks and rainbows, respectively. Seismic metamaterials can thus not only be implemented for shielding, lensing and cloaking of potentially deleterious Rayleigh waves, but they also have potential applications in energy harvesting and analogous computations using ambient seismic noise, and this opens new vistas in seismic energy harvesting and conversion through the use of natural or artificial soil structuring.
Mots-clés : Métamatériaux sismiques, Physique transformationnelle, Milieux modulés en temps, Homogénéisation, Calculateur analogique, Energie sismique ambiante
Stéphane Brûlé 1 ; Sébastien Guenneau 2
![](/physique/static/ptf/img/CC-BY%204.0.png)
@article{CRPHYS_2020__21_7-8_767_0, author = {St\'ephane Br\^ul\'e and S\'ebastien Guenneau}, title = {Past, present and future of seismic metamaterials: experiments on soil dynamics, cloaking, large scale analogue computer and space{\textendash}time modulations}, journal = {Comptes Rendus. Physique}, pages = {767--785}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {7-8}, year = {2020}, doi = {10.5802/crphys.39}, language = {en}, }
TY - JOUR AU - Stéphane Brûlé AU - Sébastien Guenneau TI - Past, present and future of seismic metamaterials: experiments on soil dynamics, cloaking, large scale analogue computer and space–time modulations JO - Comptes Rendus. Physique PY - 2020 SP - 767 EP - 785 VL - 21 IS - 7-8 PB - Académie des sciences, Paris DO - 10.5802/crphys.39 LA - en ID - CRPHYS_2020__21_7-8_767_0 ER -
%0 Journal Article %A Stéphane Brûlé %A Sébastien Guenneau %T Past, present and future of seismic metamaterials: experiments on soil dynamics, cloaking, large scale analogue computer and space–time modulations %J Comptes Rendus. Physique %D 2020 %P 767-785 %V 21 %N 7-8 %I Académie des sciences, Paris %R 10.5802/crphys.39 %G en %F CRPHYS_2020__21_7-8_767_0
Stéphane Brûlé; Sébastien Guenneau. Past, present and future of seismic metamaterials: experiments on soil dynamics, cloaking, large scale analogue computer and space–time modulations. Comptes Rendus. Physique, Metamaterials 2, Volume 21 (2020) no. 7-8, pp. 767-785. doi : 10.5802/crphys.39. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.39/
[1] Experiments on seismic metamaterials: molding surface waves, Phys. Rev. Lett., Volume 112 (2014), 133901 | DOI
[2] Flat lens for seismic waves, Sci. Rep., Volume 7 (2017), 18066
[3] Report of the post-seismic mission on the mexico earthquake of september 19th, 20017 (2017) (Technical report)
[4] Role of nanophotonics in the birth of seismic megastructures, Nanophotonics, Volume 8 (2019), pp. 1591-1605 | DOI
[5] Modulated phononic crystals: non-reciprocal wave propagation and willis materials, J. Mech. Phys. Solids, Volume 101 (2017), pp. 10-29 | DOI | MR
[6] Variational principles for dynamic problems in inhomogeneous elastic media, Wave Motion, Volume 3 (1981), pp. 1-11 | DOI | Zbl
[7] Artificial dispersion via high-order homogenization: magnetoelectric coupling and magnetism from dielectric layers, Proc. R. Soc. Lond. A, Volume 469 (2013), 20130240 | MR | Zbl
[8] Fresnel drag in space-time modulated metamaterials, Proc. Natl Acad. Sci. USA, Volume 116 (2019), pp. 24943-24948 | DOI
[9] Performing mathematical operations with metamaterials, Science, Volume 343 (2014), pp. 160-163 | DOI | MR | Zbl
[10] Inverse-designed metastructures that solve equations, Science, Volume 22 (2019), pp. 1333-1338 | DOI | MR | Zbl
[11] Sols structurés sous sollicitation dynamique : des métamatériaux en géotechnique, Rev. Fr. Geotech., Volume 151 (2017), p. 4 | DOI
[12] Numerical and experimental study of an invisibility carpet in a water channel, Phys. Rev. E, Volume 91 (2015), 023010 | DOI
[13] Broadband cylindrical acoustic cloak for linear surface waves in a fluid, Phys. Rev. Lett., Volume 101 (2008), 134501 | DOI
[14] Emergence of seismic metamaterials: current state and future perspectives, Phys. Lett. A, Volume 384 (2020), 126034 | DOI
[15] Molding acoustic, electromagnetic and water waves with a single cloak, Sci. Rep., Volume 5 (2015), 10678
[16] Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates, Phys. Rev. B, Volume 85 (2012), 020301 | DOI
[17] On energy harvesting from ambient noise, J. Sound Vib., Volume 293 (2006), pp. 413-425 | DOI
[18] Experimental evidence of auxetic features in seismic metamaterials: Ellipticity of seismic rayleigh waves for subsurface architectured ground with holes (2018) (https://arxiv.org/abs/1809.05841)
[19] On the possibility of seismic rogue waves in very soft soils, 2020 (https://arxiv.org/abs/2004.07037)
[20] The influence of building interactions on seismic and elastic body waves, EPJ Appl. Metamater., Volume 6 (2019), p. 18 | DOI
[21] Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances, Sci. Rep., Volume 6 (2016), 19238 | DOI
[22] A seismic metamaterial: the resonant metawedge, Sci. Rep., Volume 6 (2016), 27717 | DOI
[23] Trapped rainbow storage of light in metamaterials, Nature, Volume 450 (2007), p. 397 | DOI
[24] Conversion of love waves in a forest of trees, Phys. Rev. B, Volume 98 (2018), 134311 | DOI
[25] Graded metasurface for enhanced sensing and energy harvesting, New J. Phys., Volume 22 (2020), 013013
[26] Ten Books on Architecture. Vol. 15, Cambridge University Press, New York, 1999
[27] The mechanical analog computers of Hannibal Ford and William Newell, IEEE Ann. Hist. Comput., Volume 15 (1993), pp. 19-34 | DOI
[28] An Introduction to the Mathematical Theory of Dynamic Materials, Springer, New York, 2007 | Zbl
[29] Lettre d’augustin fresnel a francois arago sur l’influence du mouvement terrestre dans quelques phenomenes d’optique, Ann. Chem. Phys., Volume 9 (1818), pp. 57-67
[30] Sur les hypotheses relatives a l’ether lumineux, C. R. Acad. Sci., Volume 33 (1851), pp. 349-355
[31] Asymmetric acoustic propagation of wave packets via the self-demodulation effect, Phys. Rev. Lett., Volume 115 (2015), 234301 | DOI
[32] Metamaterials beyond electromagnetism, Rep. Prog. Phys., Volume 76 (2013), 126501 | DOI
[33] Auxetic-like metamaterials as novel earthquake protections, EPJ Appl. Metamater., Volume 2015 (2016), p. 17
[35] Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-bandgap, Phys. Rev. B, Volume 59 (1999), 12169 | DOI
[36] Experimental observation of locally-resonant and bragg band gaps for surface guided waves in a phononic crystal of pillars, Phys. Rev. B, Volume 83 (2011), 104201 | DOI
[37] Large scale mechanical metamaterials as seismic shields, New J. Phys., Volume 18 (2016), 083041 | DOI
[38] Clamped seismic metamaterials: ultra-low frequency stop bands, New J. Phys., Volume 19 (2017), 063022 | DOI
[39] Hybridization of guided surface acoustic modes in unconsolidated granular media by a resonant metasurface, Phys. Rev. Appl., Volume 9 (2018), 054026 | DOI
[40] Evidence of metamaterial physics at the geophysics scale: the metaforet experiment, Geophys. J. Int., Volume 220 (2020), pp. 1330-1339
[41] A review of research on seismic metamaterials, Adv. Eng. Mater., Volume 22 (2020), e1901148
[42] Effects of surface and subsurface irregularities on the amplitude of monochromatic waves, Bull. Seismol. Soc. Am., Volume 67 (1977), pp. 353-368
[43] Control of Rayleigh-like waves in thick plate willis metamaterials, AIP Adv., Volume 6 (2016), 121707 | DOI
[44] Metamaterial-like transformed urbanism, Innov. Infrastruct. Solut., Volume 2 (2017), p. 20 | DOI
[45] Effects of buildings on the duration and amplitude of ground motion in mexico city, Bull. Seismol. Soc. Am., Volume 86 (1996), pp. 914-920
[46] Numerical analysis of seismic wave amplification in nice (france) and comparisons with experiments, Soil Dyn. Earthq. Eng., Volume 19 (2000), pp. 347-362 | DOI
[47] Modification of the ground motion in dense urban areas, J. Comput. Acoust., Volume 9 (2001), pp. 1659-1675 | DOI
[48] Site-city seismic interaction in mexico city-like environments: an analytical study, Bull. Seismol. Soc. Am., Volume 92 (2002), pp. 794-811 | DOI
[49] Assessment of the urbanization effect on seismic response, Bull. Seismol. Soc. Am., Volume 94 (2004), pp. 251-268 | DOI
[50] Seismic site-city interaction: main governing phenomena through simplified numerical models, Bull. Seismol. Soc. Am., Volume 96 (2006), pp. 1934-1951 | DOI
[51] Magnitude and energy of earthquakes, Ann. Geofis., Volume 9 (1956), pp. 1-15
Cité par Sources :
Commentaires - Politique