Comptes Rendus
Metamaterials and invisibility
[Métamatériaux et invisibilité]
Comptes Rendus. Physique, Volume 10 (2009) no. 5, pp. 379-390.

Les métamatériaux ont considérablement élargi le domaine des propriétés électromagnétiques accessibles pour la conception de système optiques. L'invisibilité est une application intéressante de ces nouveaux matériaux dont l'objet est de rendre un objet invisible pour un champ électromagnétique dans un certain domaine de fréquence. Dans cet article, je passe en revue les concepts sous jacents aux capes d'invisibilité récemment proposées et la manière dont les métamatériaux autorisent leur réalisation.

Metamaterials have significantly extended the range of electromagnetic properties available to device designers. An interesting application of these new materials is to the problem of cloaking, where the goal is to render an object invisible to electromagnetic radiation within a certain frequency range. Here, I review the concepts behind recently-proposed invisibility cloaks, and the way in which metamaterials can allow these designs to be realized.

Publié le :
DOI : 10.1016/j.crhy.2009.01.002
Keywords: Metamaterials, Invisibility, Cloaking
Mot clés : Métamatériaux, Invisibilité, Capes d'invisibilité
Ben Wood 1

1 Blackett Laboratory, Imperial College London, South Kensington, London SW7 2AZ, UK
@article{CRPHYS_2009__10_5_379_0,
     author = {Ben Wood},
     title = {Metamaterials and invisibility},
     journal = {Comptes Rendus. Physique},
     pages = {379--390},
     publisher = {Elsevier},
     volume = {10},
     number = {5},
     year = {2009},
     doi = {10.1016/j.crhy.2009.01.002},
     language = {en},
}
TY  - JOUR
AU  - Ben Wood
TI  - Metamaterials and invisibility
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 379
EP  - 390
VL  - 10
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.01.002
LA  - en
ID  - CRPHYS_2009__10_5_379_0
ER  - 
%0 Journal Article
%A Ben Wood
%T Metamaterials and invisibility
%J Comptes Rendus. Physique
%D 2009
%P 379-390
%V 10
%N 5
%I Elsevier
%R 10.1016/j.crhy.2009.01.002
%G en
%F CRPHYS_2009__10_5_379_0
Ben Wood. Metamaterials and invisibility. Comptes Rendus. Physique, Volume 10 (2009) no. 5, pp. 379-390. doi : 10.1016/j.crhy.2009.01.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.01.002/

[1] S. Tachi Telexistence and retro-reflective projection technology, Proceedings of VRIC, Volume 5 (2003), p. 69

[2] A. Alù; N. Engheta Achieving transparency with plasmonic and metamaterial coatings, Physical Review E, Volume 72 (2005) no. 1, p. 016623

[3] A. Alù; N. Engheta Erratum: Achieving transparency with plasmonic and metamaterial coatings [Physical Review E 72 (2005) 016623], Physical Review E, Volume 73 (2006) no. 1, p. 019906

[4] A. Alù; N. Engheta Cloaking and transparency for collections of particles with metamaterial and plasmonic covers, Optics Express, Volume 15 (2007) no. 12, pp. 7578-7590

[5] J.B. Pendry Negative refraction makes a perfect lens, Physical Review Letters, Volume 85 (2000) no. 18, pp. 3966-3969

[6] G.W. Milton; N.-A.P. Nicorovici On the cloaking effects associated with anomalous localized resonance, Proceedings of the Royal Society A, Volume 462 (2006), pp. 3027-3059

[7] N.A. Nicorovici; G.W. Milton; R.C. McPhedran; L.C. Botten Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance, Optics Express, Volume 15 (2007) no. 10, pp. 6314-6323

[8] N.A. Nicorovici; R.C. McPhedran; G.W. Milton Optical and dielectric properties of partially resonant composites, Physical Review B, Volume 49 (1994) no. 12, pp. 8479-8482

[9] S. Guenneau; B. Gralak; J.B. Pendry Perfect corner reflector, Optics Letters, Volume 30 (2005) no. 10, pp. 1204-1206

[10] J.B. Pendry; D. Schurig; D.R. Smith Controlling electromagnetic fields, Science, Volume 312 (2006) no. 5781, p. 1780

[11] U. Leonhardt Optical conformal mapping, Science, Volume 312 (2006) no. 5781, p. 1777

[12] D. Schurig; J.J. Mock; B.J. Justice; S.A. Cummer; J.B. Pendry; A.F. Starr; D.R. Smith Metamaterial electromagnetic cloak at microwave frequencies, Science, Volume 314 (2006) no. 5801, p. 977

[13] W. Cai; U.K. Chettiar; A.V. Kildishev; V.M. Shalaev Optical cloaking with metamaterials, Nature Photonics, Volume 1 (2007), pp. 224-227

[14] B. Wood; J.B. Pendry Metamaterials at zero frequency, Journal of Physics: Condensed Matter, Volume 19 (2007) no. 7, p. 076208

[15] H. Chen; C.T. Chan Acoustic cloaking in three dimensions using acoustic metamaterials, Applied Physics Letters, Volume 91 (2007) no. 18, p. 183518

[16] S.A. Cummer; D. Schurig One path to acoustic cloaking, New Journal of Physics, Volume 9 (2007), p. 45

[17] A.J. Ward; J.B. Pendry Refraction and geometry in maxwell's equations, Journal of Modern Optics, Volume 43 (1996) no. 4, pp. 773-793

[18] D. Schurig; J.B. Pendry; D.R. Smith Calculation of material properties and ray tracing in transformation media, Optics Express, Volume 14 (2006), pp. 9794-9804

[19] A.V. Kildishev; V.M. Shalaev Engineering space for light via transformation optics, Optics Letters, Volume 33 (2008) no. 1, pp. 43-45

[20] M. Tsang; D. Psaltis Magnifying perfect lens and superlens design by coordinate transformation, Physical Review B, Volume 77 (2008) no. 3, p. 035122

[21] D. Schurig; J.B. Pendry; D.R. Smith Transformation-designed optical elements, Optics Express, Volume 15 (2007) no. 22, pp. 14772-147782

[22] S.A. Cummer; B.-I. Popa; D. Schurig; D.R. Smith; J.B. Pendry Full-wave simulations of electromagnetic cloaking structures, Physical Review E, Volume 74 (2006) no. 3, p. 036621

[23] A. Greenleaf; Y. Kurylev; M. Lassas; G. Uhlmann Full-wave invisibility of active devices at all frequencies, Communications in Mathematical Physics, Volume 275 (2007) no. 3, pp. 749-789

[24] W. Yan; M. Yan; Z. Ruan; M. Qiu Coordinate transformations make perfect invisibility cloaks with arbitrary shape, New Journal of Physics, Volume 10 (2008), p. 043040

[25] A. Nicolet; F. Zolla; S. Guenneau Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section, Optics Letters, Volume 33 (2008) no. 14, pp. 1584-1586

[26] F. Zolla; S. Guenneau; A. Nicolet; J.B. Pendry Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect, Optics Letters, Volume 32 (2007) no. 9, pp. 1069-1071

[27] H. Chen; B.-I. Wu; B. Zhang; J.-A. Kong Electromagnetic wave interactions with a metamaterial cloak, Physical Review Letters, Volume 99 (2007), p. 063903

[28] Z. Ruan; M. Yan; C.W. Neff; M. Qiu Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations, Physical Review Letters, Volume 99 (2007) no. 11, p. 113903

[29] M. Yan; Z. Ruan; M. Qiu Cylindrical invisibility cloak with simplified material parameters is inherently visible, Physical Review Letters, Volume 99 (2007) no. 23, p. 233901

[30] W.N. Hardy; L.A. Whitehead Split-ring resonator for use in magnetic-resonance from 200–2000 MHz, Review of Scientific Instruments, Volume 52 (1981) no. 2, pp. 213-216

[31] J.B. Pendry; A.J. Holden; D.J. Robbins; W.J. Stewart Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques, Volume 47 (1999) no. 11, pp. 2075-2084

[32] R. Marques; F. Mesa; J. Martel; F. Medina Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design – theory and experiments, IEEE Transactions on Antennas and Propagation, Volume 51 (2003) no. 10, pp. 2572-2581 (Part 1)

[33] M. Shamonin; E. Shamonina; V. Kalinin; L. Solymar Resonant frequencies of a split-ring resonator: Analytical solutions and numerical simulations, Microwave and Optical Technology Letters, Volume 44 (2005) no. 2, pp. 133-136

[34] B. Wood Structure and properties of electromagnetic metamaterials, Laser and Photonics Review, Volume 1 (2007) no. 3, pp. 249-259

[35] D.R. Smith; J.B. Pendry Homogenization of metamaterials by field averaging, Journal of the Optical Society of America B, Volume 23 (2006) no. 3, pp. 391-403

[36] W. Cai; U.K. Chettiar; A.V. Kildishev; V.M. Shalaev; G.W. Milton Nonmagnetic cloak with minimized scattering, Applied Physics Letters, Volume 91 (2007), p. 111105

[37] H. Chen; Z. Liang; P. Yao; X. Jiang; H. Ma; C.T. Chan Extending the bandwidth of electromagnetic cloaks, Physical Review B, Volume 76 (2007) no. 24, p. 241104

[38] F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M.C.K. Wiltshire, D. Caplin, L.F. Cohen, J.B. Pendry, A DC magnetic metamaterial, Nature Materials. In press. | arXiv

[39] A. Greenleaf; M. Lassas; G. Uhlmann Anisotropic conductivities that cannot be detected by EIT, Physiological Measurement, Volume 24 (2003) no. 2, pp. 413-419

[40] A. Greenleaf; M. Lassas; G. Uhlmann On nonuniqueness for Calderón's inverse problem, Mathematical Research Letters, Volume 10 (2003) no. 5–6, pp. 685-693

[41] M. Farhat; S. Enoch; S. Guenneau; A.B. Movchan Broadband cylindrical acoustic cloak for linear surface waves in a fluid, Physical Review Letters, Volume 101 (2008), p. 134501

[42] G.W. Milton; M. Briane; J.R. Willis On cloaking for elasticity and physical equations with a transformation invariant form, New Journal of Physics, Volume 8 (2006) no. 10, p. 248

[43] G.W. Milton; J.R. Willis On modifications of Newton's second law and linear continuum elastodynamics, Proceedings of the Royal Society A, Volume 463 (2007), pp. 855-880

[44] L.-W. Cai; J. Sánchez-Dehesa Analysis of Cummer–Schurig acoustic cloaking, New Journal of Physics, Volume 9 (2007) no. 12, p. 450

[45] S.A. Cummer; B.-I. Popa; D. Schurig; D.R. Smith; J.B. Pendry; M. Rahm; A. Starr Scattering theory derivation of a 3D acoustic cloaking shell, Physical Review Letters, Volume 100 (2008) no. 2, p. 024301

[46] A.P. Calderón On an inverse boundary problem (W.H. Meyer; M.A. Raupp, eds.), Seminar on Numerical Analysis and its Applications to Continuum Physics, Sociedade Brasileira de Matematica, Rio de Janeiro, 1980, pp. 65-73

[47] Y. Kurylev; M. Lassas; E. Somersalo Maxwell's equations with a polarization independent wave velocity: Direct and inverse problems, Journal de Mathématiques Pures et Appliquées, Volume 86 (2006), pp. 237-270

[48] J. Sylvester; G. Uhlmann A global uniqueness theorem for an inverse boundary value problem, Annals of Mathematics, Volume 25 (1987), pp. 153-169

[49] G. Uhlmann Scattering by a metric (E.R. Pike; P.C. Sabatier, eds.), Scattering and Inverse Scattering in Pure and Applied Science, Academic Press, 2002, pp. 1668-1677

[50] R.V. Kohn; H. Shen; M.S. Vogelius; M.I. Weinstein Cloaking via change of variables in electric impedance tomography, Inverse Problems, Volume 24 (2008), p. 015016

[51] P. Ola; L. Päivärinta; E. Somersalo An inverse boundary problem in electrodynamics, Duke Mathematical Journal, Volume 70 (1993) no. 3, pp. 617-653

[52] A.I. Nachman Reconstruction from boundary measurements, Annals of Mathematics, Volume 128 (1988), pp. 531-576

[53] R. Weder Rigorous analysis of high-order electromagnetic invisibility cloaks, Journal of Physics A: Mathematical and Theoretical, Volume 41 (2008), p. 065207

[54] B. Zhang, H. Chen, B.-I. Wu, and J.-A. Kong, Extraordinary surface voltage effect in the invisibility cloak with an active device inside, Physical Review Letters. In press. | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A review of anomalous resonance, its associated cloaking, and superlensing

Ross C. McPhedran; Graeme W. Milton

C. R. Phys (2020)


Cloaking by plasmonic resonance among systems of particles: cooperation or combat?

Ross C. McPhedran; Nicolae-Alexandru P. Nicorovici; Lindsay C. Botten; ...

C. R. Phys (2009)


Transformation optics for plasmonics: from metasurfaces to excitonic strong coupling

Paloma A. Huidobro; Antonio I. Fernández-Domínguez

C. R. Phys (2020)