[Classification Toulouse–Kleman de défauts topologiques dans les systèmes ordonnés, illustrée par des expériences]
La classification de défauts dans les systèmes ordonnés, basée sur la théorie de homotopie, conçue par Gérard Toulouse et Maurice Kleman a des nombreuses applications. Nous illustrons son modus operandi avec trois exemples expérimentaux. D’abord, nous considérons les dislocations dans un système dissipatif périodique fait de rouleaux de convection d’une instabilité de cisaillement d’un nématique. Le deuxième example est celui de disinclinaisons captives enfilées sur une fibre polymérique immergée dans un nématique. En troisième lieu, nous nous intéressons aux objets à caractère topologique double définis pour la première fois dans un article générique cosigné par Gérard Toulouse : les liens de Hopf faits de deux et trois dislocations annulaires dans un cholestérique. Finalement, nous annonçons la découverte de la version généralisée - colliers faits d’une multitude d’anneaux minimaux enfilés sur une dislocations porteuse.
Compléments :
Des compléments sont fournis pour cet article dans les fichiers suivants :
- Video 1 - Dislocation In Shear Flow Instability In Nematics-1.m4v
- Video 2 - Resiliance Of A Captive Disclination Loop-1.m4v
- Video 3 - Topology Of A Disclination In Nematics-1.m4v
- Video 4 - Genesis Of The Hopf Link In Experiments-1.m4v
- Video 5 - Genesis Of The Hopf Link By Coalescence Of Folded Unknots-1.m4v
- Video 6 - Shape Evolution Of A Hopf Link-1.m4v
- Video 7 - Perspective View Of The Hopf Link-1.m4v
- Video 8 - Collapse Of The Hopf Link-1.m4v
- Video 9 - Three Component Hopf Neclace-1.m4v
- Video 10 - Collapse Of A Three Component Hopf Necklace-1.m4v
- Video 11 - Geometry Of The Three Component Hopf Necklace-1.m4v
Classification of defects in ordered systems, based on the homotopy theory, conceived by Gérard Toulouse and Maurice Kléman has a very wide range of applications. We illustrate its modus operandi with three experimental examples. We deal first with dislocations in a dissipative periodic pattern of convection rolls in a shear flow instability in nematics. As the second example we chose the captive disclination loops threaded on polymer fibers immersed in nematics. Third, we focus on objects with double topological character defined for the first time in the generic article coauthored by Gérard Toulouse: the “double et tripple anneau” Hopf links made of interlaced dislocation loops in cholesterics. Finally, we report on the recent discovery of their generalised, beads necklace version made of many minimal dislocation loops threaded, like pearls, on a string-like dislocation loops.
Supplementary Materials:
Supplementary materials for this article are supplied as separate files:
- Video 1 - Dislocation In Shear Flow Instability In Nematics-1.m4v
- Video 2 - Resiliance Of A Captive Disclination Loop-1.m4v
- Video 3 - Topology Of A Disclination In Nematics-1.m4v
- Video 4 - Genesis Of The Hopf Link In Experiments-1.m4v
- Video 5 - Genesis Of The Hopf Link By Coalescence Of Folded Unknots-1.m4v
- Video 6 - Shape Evolution Of A Hopf Link-1.m4v
- Video 7 - Perspective View Of The Hopf Link-1.m4v
- Video 8 - Collapse Of The Hopf Link-1.m4v
- Video 9 - Three Component Hopf Neclace-1.m4v
- Video 10 - Collapse Of A Three Component Hopf Necklace-1.m4v
- Video 11 - Geometry Of The Three Component Hopf Necklace-1.m4v
Révisé le :
Accepté le :
Publié le :
Mots-clés : défauts topologiques, dislocations, noeuds, liens, torsades, cholestériques
Pawel Pieranski 1 ; Maria Helena Godinho 2
@article{CRPHYS_2024__25_G1_367_0, author = {Pawel Pieranski and Maria Helena Godinho}, title = {The {Toulouse{\textendash}Kleman} homotopic classification of topological defects in ordered systems illustrated by experiments}, journal = {Comptes Rendus. Physique}, pages = {367--388}, publisher = {Acad\'emie des sciences, Paris}, volume = {25}, year = {2024}, doi = {10.5802/crphys.206}, language = {en}, }
TY - JOUR AU - Pawel Pieranski AU - Maria Helena Godinho TI - The Toulouse–Kleman homotopic classification of topological defects in ordered systems illustrated by experiments JO - Comptes Rendus. Physique PY - 2024 SP - 367 EP - 388 VL - 25 PB - Académie des sciences, Paris DO - 10.5802/crphys.206 LA - en ID - CRPHYS_2024__25_G1_367_0 ER -
%0 Journal Article %A Pawel Pieranski %A Maria Helena Godinho %T The Toulouse–Kleman homotopic classification of topological defects in ordered systems illustrated by experiments %J Comptes Rendus. Physique %D 2024 %P 367-388 %V 25 %I Académie des sciences, Paris %R 10.5802/crphys.206 %G en %F CRPHYS_2024__25_G1_367_0
Pawel Pieranski; Maria Helena Godinho. The Toulouse–Kleman homotopic classification of topological defects in ordered systems illustrated by experiments. Comptes Rendus. Physique, Volume 25 (2024), pp. 367-388. doi : 10.5802/crphys.206. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.206/
[1] Principles of a classification of defects in ordered media, J. Physique Lett., Volume 37 (1976), pp. 149-151 | DOI
[2] Dislocations, International series of monographs on solid state physics, 3, Pergamon Press, Oxford, 1964
[3] Dislocations and other topological oddities, C. R. Acad. Sci. Paris, Volume 17 (2016), pp. 242-263 | DOI
[4] Superconducivity of metals and alloys, Benjamin, 1964 | DOI
[5] Pierre Gilles de Gennes: beautiful and mysterious liquid crystals, C. R. Acad. Sci. Paris, Volume 20 (2019), pp. 756-769 | DOI
[6] Soft matter physics: an introduction, Partially Ordered Systems, Springer, 2003 | DOI
[7] Defects in liquid crystals: homotopy and experimental studies, Usp. Fiz. Nauk, Volume 154 (1988), pp. 381-431 | DOI
[8] Review: knots and other new topological effects in liquid crystals and colloids, Rep. Prog. Phys., Volume 83 (2020), 106601 | DOI
[9] Helicity conservation by flow accross scales in reconnecting vortex links and knots, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), pp. 15350-15355 | DOI
[10] et al. Imaging of super-fast dynamics and flow instabilities of superconducting vortices, Nat. Commun., Volume 8 (2017), 85 | DOI
[11] Knotted and linked phase singularities in monochromatic waves, Proc. R. Soc. Lond., Ser. A, Volume 111 (2001), pp. 2251-2263 | DOI | Zbl
[12] Dissipative structures and weak turbulence, Perspectives in Physics, Academic Press Inc., Boston, 1990 | Zbl
[13] Towards a universal theory for natural patterns, Phys. D: Nonlinear Phenom., Volume 74 (1994), pp. 301-352 | DOI | Zbl
[14] Heat convection in liquid crystals heated from above, Phys. Rev. Lett., Volume 30 (1973), pp. 736-739 | DOI
[15] Effects of elliptically polarized shear flows in nematics, Phys. Rev. Lett., Volume 39 (1977), pp. 1280-1282 | DOI
[16] Pattern selection in Faraday instability, Eur. Phys. Lett., Volume 6 (1988), 221 | DOI
[17] Competition between shear melting and Taylor instabilities in colloidal crystals, Phys. Rev. Lett., Volume 58 (1987), pp. 136-139 | DOI
[18] et al. Hommage à Etienne Guyon, Reflets phys., Volume Mai (2024) no. 78, pp. 32-41 | DOI
[19] Action of fields on captive disclination loops, Eur. Phys. J. E, Volume 40 (2017), 28 | DOI
[20] Distorsions with double topological character: the case of cholesterics, J. Phys. France, Volume 39 (1978), pp. 863-867 | DOI
[21] Unknots, knots, links and necklaces made of dislocations in cholesterics, Liquid Crystals (2024) | DOI
[22] Recherches sur les textures des états mésomorphes. 6 - Dislocations coin et signification des cloisons de Grandjean–Cano dans les cholestériques, J. Phys., Volume 35 (1974), pp. 959-981 | DOI
[23] Fertile metastability, Liquid Crystals (2023), pp. 1-16 | DOI
[24] Cholesteric dislocations in mica wedges, Liquid Crystals Reviews, Volume 10 (2022), pp. 6-33 | DOI
[25] Etats mésomorphes de la matière, Ann. Phys. Fr., Volume 18 (1922), pp. 273-474 | DOI
[26] Lignes de dislocations dans les cholestériques, J. Phys. Colloques, Volume 30 (1969), p. C4-43–C4-53 | DOI
[27] Three-dimensional director structures of defects in Grandjean–Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy, Phys. Rev. E, Volume 6 (2002), 051703 | DOI
[28] Dislocation dans les cholestériques: II. Modèles des dislocations , Philos. Mag., Volume 29 (1974), pp. 621-640 | DOI
[29] Sens d’une exploration, Le goût de la science. Comment je suis devenu chercheur (Julie Clarini, ed.), Editions Alvik, 2005
Cité par Sources :
Commentaires - Politique