Comptes Rendus
Article de synthèse
From the perceptron to the cerebellum
[Du perceptron au cervelet]
Comptes Rendus. Physique, Volume 26 (2025), pp. 463-477.

Cet article fait partie du numéro thématique Gérard Toulouse, une vie de découvertes et d'engagement coordonné par Bernard Derrida et al..

The perceptron has served as a prototypical neuronal learning machine in the physics community interested in neural networks and artificial intelligence, which included Gérard Toulouse as one of its prominent figures. It has also been used as a model of Purkinje cells of the cerebellum, a brain structure involved in motor learning, in the early influential theories of David Marr and James Albus. We review these theories, more recent developments in the field, and highlight questions of current interest.

Le perceptron a servi de modèle prototypique de machine d’apprentissage neuronale au sein de la communauté des physiciens intéressés par les réseaux neuronaux et l’intelligence artificielle, dont Gérard Toulouse était l’une des plus éminentes figures. Il a également été utilisé comme modèle des cellules de Purkinje du cervelet, une structure cérébrale impliquée dans l’apprentissage moteur, dans les premières théories influentes de David Marr et James Albus. Nous passons en revue ces théories, les développements plus récents dans le domaine, et mettons en lumière des questions d’intérêt actuel.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.251
Keywords: Perceptron, Cerebellum, Theoretical neuroscience
Mots-clés : Perceptron, Cervelet, Neurosciences théoriques

Nicolas Brunel 1 ; Vincent Hakim 2 ; Jean-Pierre Nadal 2, 3

1 Department of Computing Sciences, Università Bocconi, Milan, Italy
2 Laboratoire de Physique de l’École Normale Supérieure, École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
3 Centre d’Analyse et de Mathématique Sociales, EHESS, CNRS, Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_463_0,
     author = {Nicolas Brunel and Vincent Hakim and Jean-Pierre Nadal},
     title = {From the perceptron to the cerebellum},
     journal = {Comptes Rendus. Physique},
     pages = {463--477},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.251},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Brunel
AU  - Vincent Hakim
AU  - Jean-Pierre Nadal
TI  - From the perceptron to the cerebellum
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 463
EP  - 477
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.251
LA  - en
ID  - CRPHYS_2025__26_G1_463_0
ER  - 
%0 Journal Article
%A Nicolas Brunel
%A Vincent Hakim
%A Jean-Pierre Nadal
%T From the perceptron to the cerebellum
%J Comptes Rendus. Physique
%D 2025
%P 463-477
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.251
%G en
%F CRPHYS_2025__26_G1_463_0
Nicolas Brunel; Vincent Hakim; Jean-Pierre Nadal. From the perceptron to the cerebellum. Comptes Rendus. Physique, Volume 26 (2025), pp. 463-477. doi : 10.5802/crphys.251. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.251/

[1] D. Sherrington; S. Kirkpatrick Solvable model of a spin-glass, Phys. Rev. Lett., Volume 35 (1975) no. 26, pp. 1792-1795 | DOI

[2] M. Gabay; G. Toulouse Coexistence of spin-glass and ferromagnetic orderings, Phys. Rev. Lett., Volume 47 (1981) no. 3, pp. 201-204 | DOI

[3] G. Toulouse Theory of the frustration effect in spin glasses: I, Commun. Phys., Volume 2 (1977), pp. 115-119

[4] M. Mezard; G. Parisi; M. Virasoro Spin Glass Theory and Beyond, World Scientific, Singapore, 1986 | DOI | MR

[5] J. J. Hopfield Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA, Volume 79 (1982) no. 8, pp. 2554-2558 | DOI | MR | Zbl

[6] G. Toulouse; S. Dehaene; J.-P. Changeux Spin glass model of learning by selection, Proc. Natl. Acad. Sci. USA, Volume 83 (1986) no. 6, pp. 1695-1698 | DOI | MR

[7] J.-P. Nadal; G. Toulouse; J.-P. Changeux; S. Dehaene Networks of formal neurons and memory palimpsests, Europhys. Lett., Volume 1 (1986) no. 10, pp. 535-542 | DOI

[8] J.-P. Nadal; G. Toulouse Information storage in sparsely coded memory nets, Network: Comput. Neural Syst., Volume 1 (1990) no. 1, pp. 61-74 | DOI | MR | Zbl

[9] N. Brunel; J.-P. Nadal; G. Toulouse Information capacity of a perceptron, J. Phys. A: Math. Gen., Volume 25 (1992) no. 19, pp. 5017-5037 | DOI | MR | Zbl

[10] G. M. Shepherd The Synaptic Organization of the Brain, Oxford University Press, Oxford, 2003

[11] J. L. Raymond; J. F. Medina Computational principles of supervised learning in the cerebellum, Annu. Rev. Neurosci., Volume 41 (2018) no. 1, pp. 233-253 | DOI

[12] J. D. Schmahmann; X. Guell; C. J. Stoodley; M. A. Halko The theory and neuroscience of cerebellar cognition, Annu. Rev. Neurosci., Volume 42 (2019) no. 1, pp. 337-364 | DOI

[13] C. Hull; W. G. Regehr The cerebellar cortex, Annu. Rev. Neurosci., Volume 45 (2022) no. 1, pp. 151-175 | DOI

[14] N. E. én; K. Fuxe; U. Ungerstedt Monoamine pathways to the cerebellum and cerebral cortex, Experientia, Volume 23 (1967), pp. 838-938 | DOI

[15] P. W. Chin; G. J. Augustine Serotonergic input into the cerebellar cortex modulates anxiety-like behavieor, J. Neurosci., Volume 45 (2025) no. 14, e1825242024 | DOI

[16] D. Jaarsma; T. J. H. Ruigrok; R. Caffé; C. Cozzari; A. I. Levey; E. Mugnaini; J. Voogd Chapter 5 Cholinergic innervation and receptors in the cerebellum, The Cerebellum: From Structure to Control (C. I. De Zeeuw; P. Strata; J. Voogd, eds.) (Progress in Brain Research), Volume 114, Elsevier, Amsterdam, 1997, pp. 67-96 | DOI

[17] T. R. Fore; B. N. Taylor; N. Brunel; C. Hull Acetylcholine modulates cerebellar granule cell spiking by regulating the balance of synaptic excitation and inhibition, J. Neurosci., Volume 40 (2020) no. 14, pp. 2882-2894 | DOI

[18] R. J. Harvey; R. M. Napper Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat, J. Comp. Neurol., Volume 274 (1988), pp. 151-157 | DOI

[19] R. J. Harvey; R. M. Napper Quantitative studies on the mammalian cerebellum, Prog. Neurobiol., Volume 36 (1991), pp. 437-463 | DOI

[20] I. Sugihara; H.-S. Wu; Y. Shinoda The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization, J. Neurosci., Volume 21 (2001) no. 19, pp. 7715-7723 | DOI

[21] J. C. Eccles; M. Ito; J. Szentágothai The Cerebellum as a Neuronal Machine, Springer-Verlag, Berlin, 1967 | DOI

[22] D. Marr A theory of cerebellar cortex, J. Physiol., Volume 202 (1969), pp. 437-470 | DOI

[23] J. S. Albus A theory of cerebellar function, Math. Biosci., Volume 10 (1971), pp. 26-51 | DOI

[24] M. Ito; M. Sakurai; P. Tongroach Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells, J. Physiol., Volume 324 (1982), pp. 113-134 | DOI

[25] Y. Yang; S. G. Lisberger Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration, Nature, Volume 510 (2014), pp. 529-532 | DOI

[26] R. F. Thompson; J. K. Thompson; J. J. Kim; D. J. Krupa; P. G. Shinkman The nature of reinforcement in cerebellar learning, Neurobiol. Learning Memory, Volume 70 (1998) no. 1–2, pp. 150-176 | DOI

[27] M. M. Churchland; J. P. Cunningham; M. T. Kaufman; J. D. Foster; P. Nuyujukian; S. I. Ryu; K. V. Shenoy Neural population dynamics during reaching, Nature, Volume 487 (2012) no. 7405, pp. 51-56 | DOI

[28] P. Gao; S. Ganguli On simplicity and complexity in the brave new world of large-scale neuroscience, Curr. Opin. Neurobiol., Volume 32 (2015), pp. 148-155 | DOI

[29] J. A. Gallego; M. G. Perich; L. E. Miller; S. A. Solla Neural manifolds for the control of movement, Neuron, Volume 94 (2017) no. 5, pp. 978-984 | DOI

[30] S. Chung; L. F. Abbott Neural population geometry: An approach for understanding biological and artificial neural networks, Curr. Opin. Neurobiol., Volume 70 (2021), pp. 137-144 | DOI

[31] T. M. Cover Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE Trans., Volume EC-14 (1965), pp. 326-334 | Zbl

[32] B. Schölkopf; A. J. Smola Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, The MIT Press, Cambridge, 2001 | DOI

[33] A. Vaswani; N. Shazeer; N. Parmar; J. Uszkoreit; L. Jones; A. N. Gomez; Ł. Kaiser; I. Polosukhin Attention is all you need, Advances in Neural Information Processing Systems (I. Guyon; U. Von Luxburg; S. Bengio; H. Wallach; R. Fergus; S. Vishwanathan; R. Garnett, eds.), Curran Associates, Inc., New York, 2017

[34] F. Mastrogiuseppe; S. Ostojic Linking connectivity, dynamics, and computations in low-rank recurrent neural networks, Neuron, Volume 99 (2018) no. 3, pp. 609-623 | DOI

[35] D. Sussillo; O. Barak Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks, Neural Comput., Volume 25 (2013) no. 3, pp. 626-649 | DOI | MR | Zbl

[36] N. A. Cayco-Gajic; R. A. Silver Re-evaluating circuit mechanisms underlying pattern separation, Neuron, Volume 101 (2019) no. 4, pp. 584-602 | DOI

[37] G. Billings; E. Piasini; A. Lrincz; Z. Nusser; R. A. Silver Structure within the cerebellar input layer enables lossless sparse encoding, Network, Volume 83 (2014), pp. 960-974 | DOI

[38] B. Babadi; H. Sompolinsky Sparseness and expansion in sensory representations, Neuron, Volume 83 (2014) no. 5, pp. 1213-1226 | DOI

[39] A. Litwin-Kumar; K. D. Harris; R. Axel; H. Sompolinsky; L. F. Abbott Optimal degrees of synaptic connectivity, Neuron, Volume 93 (2017) no. 5, pp. 1153-1164 | DOI

[40] N. A. Cayco-Gajic; C. Clopath; R. A. Silver Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks, Nat. Commun., Volume 8 (2017) no. 1, 1116 | DOI

[41] A. Giovannucci; A. Badura; B. Deverett et al. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning, Nat. Neurosci., Volume 20 (2017) no. 5, pp. 727-734 | DOI

[42] M. J. Wagner; T. H. Kim; J. Savall; M. J. Schnitzer; L. Luo Cerebellar granule cells encode the expectation of reward, Nature, Volume 544 (2017) no. 7648, pp. 96-100 | DOI

[43] L. D. Knogler; D. A. Markov; E. I. Dragomir; V. Štih; R. Portugues Sensorimotor representations in cerebellar granule cells in larval zebrafish are dense, spatially organized, and non-temporally patterned, Curr. Biol., Volume 27 (2017) no. 9, pp. 1288-1302 | DOI

[44] F. Lanore; N. A. Cayco-Gajic; H. Gurnani; D. Coyle; R. A. Silver Cerebellar granule cell axons support high-dimensional representations, Nat. Neurosci., Volume 24 (2021) no. 8, pp. 1142-1150 | DOI

[45] E. A. Fleming; G. D. Field; M. R. Tadross; C. Hull Local synaptic inhibition mediates cerebellar granule cell pattern separation and enables learned sensorimotor associations, Nat. Neurosci., Volume 27 (2024), pp. 689-701 | DOI

[46] F. Rosenblatt The perceptron: a probabilistic model for information storage and organization in the brain, Psych. Rev., Volume 65 (1958), pp. 386-408 | DOI

[47] F. Rosenblatt Principles of Neurodynamics, Spartan Books, Washington DC, 1962

[48] V. N. Vapnik The Nature of Statistical Learning Theory, Springer-Verlag, Berlin, 1999 | MR

[49] D. Willshaw; O. Buneman; H. Longuet-Higgins Non-holographic associative memory, Nature, Volume 222 (1969), pp. 960-962 | DOI

[50] E. Gardner The phase space of interactions in neural network models, J. Phys. A, Volume 21 (1988), pp. 257-270 | DOI | MR | Zbl

[51] E. Gardner; B. Derrida Optimal storage properties of neural network models, J. Phys. A: Math. Gen., Volume 21 (1988) no. 1, pp. 271-284 | DOI | MR

[52] N. Brunel; V. Hakim; P. Isope; J.-P. Nadal; B. Barbour Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell, Neuron, Volume 43 (2004), pp. 745-757 | DOI

[53] B. Barbour; N. Brunel; V. Hakim; J.-P. Nadal What can we learn from synaptic weight distributions?, Trends Neurosci., Volume 30 (2007), pp. 622-629 | DOI

[54] P. Isope; B. Barbour Properties of unitary granule cell Purkinje cell synapses in adult rat cerebellar slices, J. Neurosci., Volume 22 (2002), pp. 9668-9678 | DOI

[55] C. Clopath; J.-P. Nadal; N. Brunel Storage of correlated patterns in standard and bistable Purkinje cell models, PLoS Comput. Biol., Volume 8 (2012), e1002448 | DOI | MR

[56] C. Clopath; N. Brunel Optimal properties of analog perceptrons with excitatory weights, PLoS Comput. Biol., Volume 9 (2013), e1002919 | DOI

[57] V. Steuber; W. Mittmann; F. E. Hoebeek; R. A. Silver; C. I. De Zeeuw; M. Häusser; E. De Schutter Cerebellar LTD and pattern recognition by purkinje cells, Neuron, Volume 54 (2007), pp. 121-136 | DOI

[58] K. Safaryan; R. Maex; N. Davey; R. Adams; V. Steuber Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise, Sci. Rep., Volume 7 (2017), 46550 | DOI

[59] M. Fujita Adaptive filter model of the cerebellum, Biol. Cybern., Volume 45 (1982), pp. 190-206 | DOI

[60] D. V. Buonomano; M. Mauk Neural network model of the cerebellum: Temporal discrimination and the timing of motor responses, Neural Comput., Volume 6 (1994), pp. 38-55 | DOI

[61] J. F. Medina; K. S. Garcia; W. L. Nores; N. M. Taylor; M. D. Mauk Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation, J. Neurosci., Volume 20 (2000) no. 14, pp. 5516-5525 | DOI

[62] J. Porrill; P. Dean Cerebellar motor learning: when is cortical plasticity not enough?, PLoS Comput. Biol., Volume 3 (2007), e197 | DOI

[63] A. Kennedy; G. Wayne; P. Kaifosh; K. Alviña; L. F. Abbott; N. B. Sawtell A temporal basis for predicting the sensory consequences of motor commands in an electric fish, Nat. Neurosci., Volume 17 (2014), pp. 416-422 | DOI

[64] V. Zampini; J. K. Liu; M. A. Diana; P. P. Maldonado; N. Brunel; S. Dieudonné Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit, Elife, Volume 5 (2016), e15872 | DOI

[65] C. Guo; V. Huson; E. Z. Macosko; W. G. Regehr Graded heterogeneity of metabotropic signaling underlies a continuum of cell-intrinsic temporal responses in unipolar brush cells, Nat. Commun., Volume 12 (2021), 5491 | DOI

[66] F. P. Chabrol; A. Arenz; M. T. Wiechert; T. W. Margrie; D. A. DiGregorio Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons, Nat. Neurosci., Volume 18 (2015), pp. 718-727 | DOI

[67] A. Barri; M. T. Wiechert; M. Jazayeri; D. A. DiGregorio Synaptic basis of a sub-second representation of time in a neural circuit model, Nat. Commun., Volume 13 (2022), 7902 | DOI

[68] P. Dean; J. Porrill; C.-F. Ekerot; H. Jörntell The cerebellar microcircuit as an adaptive filter: experimental and computational evidence, Nat. Rev. Neurosci., Volume 11 (2010), pp. 30-43 | DOI

[69] C. Rössert; P. Dean; J. Porrill At the edge of chaos: How cerebellar granular layer network dynamics can provide the basis for temporal filters, PLoS Comput. Biol., Volume 11 (2015), e1004515 | DOI

[70] J. C. Fiala; S. Grossberg; D. Bullock Metabotropic glutamate receptor activation in cerebellar purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response, J. Neurosci., Volume 16 (1996) no. 11, pp. 3760-3774 | DOI

[71] V. Steuber; D. Willshaw A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell, J. Comput. Neurosci., Volume 17 (2004), pp. 149-164 | DOI

[72] D. J. Herzfeld; Y. Kojima; R. Soetedjo; R. Shadmehr Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum, Nat. Neurosci., Volume 21 (2018), pp. 736-743 | DOI

[73] C. Hull Prediction signals in the cerebellum: beyond supervised motor learning, Elife, Volume 9 (2020), e54073 | DOI

[74] D. Kostadinov; M. Beau; M. Blanco-Pozo; M. Häusser Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells, Nat. Neurosci., Volume 22 (2019), pp. 950-962 | DOI

[75] K. Ikezoe; N. Hidaka; S. Manita; M. Murakami; S. Tsutsumi; Y. Isomura; M. Kano; K. Kitamura Cerebellar climbing fibers multiplex movement and reward signals during a voluntary movement task in mice, Commun. Biol., Volume 6 (2023), 924 | DOI

[76] D. A. Robinson Adaptive gain control of vestibuloocular reflex by the cerebellum, J. Neurophysiol., Volume 39 (1976) no. 5, pp. 954-969 | DOI

[77] M. Ito; T. Shiida; N. Yagi; M. Yamamoto Visual influence on rabbit horizontal vestibulo-ocular reflex presumably effected via the cerebellar flocculus, Brain Res., Volume 65 (1974) no. 1, pp. 170-174 | DOI

[78] P. M. Blazquez; Y. Hirata; S. M. Highstein The vestibulo-ocular reflex as a model system for motor learning: what is the role of the cerebellum?, Cerebellum, Volume 3 (2004), pp. 188-192 | DOI

[79] L. M. Optican; D. A. Robinson Cerebellar-dependent adaptive control of primate saccadic system, J. Neurophysiol., Volume 44 (1980) no. 6, pp. 1058-1076 | DOI

[80] S. Dash; P. Thier Chapter 6 - cerebellum-dependent motor learning: Lessons from adaptation of eye movements in primates, Cerebellar Learning (N. Ramnani, ed.) (Progress in Brain Research), Volume 210, Elsevier, Amsterdam, 2014, pp. 121-155 | DOI

[81] R. Soetedjo; Y. Kojima; A. F. Fuchs Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning?, J. Neurophysiol., Volume 100 (2008) no. 4, pp. 1949-1966 | DOI

[82] G. Bouvier; J. Aljadeff; C. Clopath et al. Cerebellar learning using perturbations, eLife, Volume 7 (2018), e31599 | DOI

[83] R. J. Williams Simple statistical gradient-following algorithms for connectionist reinforcement learning, Mach. Learn., Volume 8 (1992), pp. 229-256 | DOI | Zbl

[84] X. Xie; H. S. Seung Learning in neural networks by reinforcement of irregular spiking, Phys. Rev. E, Volume 69 (2004) no. 4, 041909 | MR

[85] C. Clopath; A. Badura; C. I. De Zeeuw; N. Brunel A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice, J. Neurosci., Volume 34 (2014) no. 21, pp. 7203-7215 | DOI

[86] C. Hansel; D. J. Linden; E. D’Angelo Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum, Nat. Neurosci., Volume 4 (2001) no. 5, pp. 467-475 | DOI

[87] Z. Gao; B. van Beugen; C. De Zeeuw Distributed synergistic plasticity and cerebellar learning, Nat. Rev. Neurosci., Volume 13 (2012), pp. 619-635 | DOI

[88] V. Kozareva; C. Martin; T. Osorno et al. A transcriptomic atlas of the mouse cerebellum reveals regional specializations and novel cell types, Nature, Volume 598 (2021), pp. 214-219 | DOI

[89] T. M. Nguyen; L. A. Thomas; J. L. Rhoades et al. Structured cerebellar connectivity supports resilient pattern separation, Nature, Volume 613 (2023) no. 7944, pp. 543-549 | DOI

[90] M. Beau; D. J. Herzfeld; F. Naveros et al. A deep-learning strategy to identify cell types across species from high-density extracellular recordings, Cell, Volume 188 (2025), pp. 2218-2234 | DOI

[91] M. Ito Control of mental activities by internal models in the cerebellum, Nat. Rev. Neurosci., Volume 9 (2008) no. 4, pp. 304-313 | DOI

[92] N. A. Cayco Gajic Communication at Les Treilles workshop “Cerebellum and Learning” (2024) https://lestreilles.hypotheses.org/10245 (Accessed 2024-12-11)

[93] E. D. Adrian Discharge frequencies in the cerebral and cerebellar cortex, Proc. Phys. Soc., Volume 83 (1935), pp. 32-33

[94] C. de Solages; G. Szapiro; N. Brunel et al. High-frequency organization and synchrony of activity in the purkinje cell layer of the cerebellum, Neuron, Volume 58 (2008), pp. 775-788 | DOI

[95] G. P. Dugue; N. Brunel; V. Hakim et al. Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network, Neuron, Volume 61 (2009), pp. 126-139 | DOI

[96] T. P. Lillicrap; A. Santoro; L. Marris; C. J. Akerman; G. Hinton Backpropagation and the brain, Nat. Rev. Neurosci., Volume 21 (2020) no. 6, pp. 335-346 | DOI

Cité par Sources :

Commentaires - Politique