Plan
Comptes Rendus

Composition of the essential oils of Hypericum perforatum L. from southeastern France
[Composition des huiles essentielles de Hypericum perforatum L. du Sud-Est de la France.]
Comptes Rendus. Biologies, Volume 325 (2002) no. 7, pp. 781-785.

Résumés

The composition of the volatile oils from the aerial parts of Hypericum perforatum L. collected in six localities from southeastern France was analysed by GC–MS. Twenty-nine to 41 compounds have been identified in these volatile oils. The main constituents were sesquiterpene hydrocarbons, and minor variations were pointed out in the oil composition among the six populations. However, the composition of all the analysed oils greatly varied from that of the previous studies, carried out on H. perforatum essential oils from other localities, in which monoterpenoids were the major constituents, particularly, the α-pinene.

La composition des huiles essentielles des parties aériennes de Hypericum perforatum L., récoltées dans six stations du Sud-Est de la France, a été analysée par CG–SM. De 29 à 41 composés ont été identifiés dans ces huiles essentielles. Les composés majoritaires sont des sesquiterpènes. Une variabilité réduite de la composition des huiles obtenues pour les six populations a pu être mise en évidence. Cependant, la composition de l’ensemble de ces huiles est très différente de celles, précédemment publiées dans la littérature, de spécimens de H. perforatum provenant d’autres localités et très riches en monoterpènes, notamment en α-pinène.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0691(02)01489-0
Keywords: Hypericum perforatum, Guttiferae, essential oil, sesquiterpene hydrocarbons
Mot clés : Hypericum perforatum, Guttifère, huile essentielle, sesquiterpènes
Isabelle Schwob 1 ; Jean-Marie Bessière 2 ; Josette Viano 1

1 Laboratoire « Dynamique et ressources du végétal », EA 2202 « Biodiversité », université de Provence, case 17, 3, place Victor-Hugo, 13331 Marseille cedex 3, France
2 École nationale supérieure de chimie de Montpellier, URA CNRS 1193, 8, rue de l’École-Normale, 34296 Montpellier, France
@article{CRBIOL_2002__325_7_781_0,
     author = {Isabelle Schwob and Jean-Marie Bessi\`ere and Josette Viano},
     title = {Composition of the essential oils of {<strong>\protect\emph{Hypericum} perforatum}</strong> {L.} from southeastern {France}},
     journal = {Comptes Rendus. Biologies},
     pages = {781--785},
     publisher = {Elsevier},
     volume = {325},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-0691(02)01489-0},
     language = {en},
}
TY  - JOUR
AU  - Isabelle Schwob
AU  - Jean-Marie Bessière
AU  - Josette Viano
TI  - Composition of the essential oils of Hypericum perforatum L. from southeastern France
JO  - Comptes Rendus. Biologies
PY  - 2002
SP  - 781
EP  - 785
VL  - 325
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-0691(02)01489-0
LA  - en
ID  - CRBIOL_2002__325_7_781_0
ER  - 
%0 Journal Article
%A Isabelle Schwob
%A Jean-Marie Bessière
%A Josette Viano
%T Composition of the essential oils of Hypericum perforatum L. from southeastern France
%J Comptes Rendus. Biologies
%D 2002
%P 781-785
%V 325
%N 7
%I Elsevier
%R 10.1016/S1631-0691(02)01489-0
%G en
%F CRBIOL_2002__325_7_781_0
Isabelle Schwob; Jean-Marie Bessière; Josette Viano. Composition of the essential oils of Hypericum perforatum L. from southeastern France. Comptes Rendus. Biologies, Volume 325 (2002) no. 7, pp. 781-785. doi : 10.1016/S1631-0691(02)01489-0. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/S1631-0691(02)01489-0/

Version originale du texte intégral

1 Introduction

More than 300 species of the genus Hypericum, belonging to the Hypericaceae (Guttiferae family), grow in the warm and temperate regions of the Earth, but only 17 species are known to be present in France 〚1, 2〛. Among these species, Hypericum perforatum L., also known as St. John’s Wort, is traditionally used as a medicinal plant 〚3〛. It is a perennial herb that is often found in disturbed areas. St. John’s Wort is native to Europe, West Asia, North Africa, Madeira and the Azores, and is now naturalised in many parts of the world, notably North America and Australia 〚4〛.

St. John’s Wort has been extensively examined for its biological activities. This species has been found to be effective in treating mild to moderate depression 〚5〛, as well as anxiety and insomnia 〚6〛. While H. perforatum has been found to contain flavonoids, phloroglucinols, xanthones 〚6, 7〛, and biflavonoids 〚7〛, the main constituents associated with the biological activity of the plant are the napthodianthrones hypericin and hypericin-like 〚6, 8, 9〛. Works on the biological properties of species from the genus Hypericum are currently carried on in our Laboratory. A previous work dealt with hypericin and hypericin-like synthesis potential of in vitro shoot cultures of St. John’s Wort 〚10〛.

Currently studied for the hypericin and hyperforin contents, H. perforatum is not the subject of many studies on the essential oil composition. However, volatile compounds in plant chemistry are often valuable in cosmetology and pharmacology. Essential oils of H. perforatum have been investigated previously from material collected in France 〚11–14〛, Italy 〚15〛, India 〚16〛, Turkey 〚17〛 and, Serbia 〚18〛. Specialised in essential oils of various aromatic plants from South-Eastern France, our laboratory works on chemical markers helpful to study Hypericum taxons 〚19–21〛. To reach this purpose, this study was done to examine the composition of volatile oils of H. perforatum populations from southeastern France.

2 Materials and methods

2.1 Plant material

The plant material was collected during the summer 2000 in Provence–Alpes–Côte d’Azur (southeastern France), at flowering developmental stage, in different wild populations of Hypericum perforatum L. var. perforatum and var. angustifolium D.C. of various ecological conditions. Distinction between the two different varieties was estimated according to the morphological description in Flora Europaea 〚22〛 based on the leaves size. Two localities were along riverside wasteland, namely Val-d’Arc (V.) and Pertuis (P.), one, in a dried basin in Saint-Cyr (S.), two, in ‘garrigues’: one in Mérindol (M.) and the other in Bandol (B.); the last locality was situated in a mountain meadow in Meailles (Me.). Sampling was done by a randomised collection of 30 individuals in each population.

The voucher specimens were deposited in the Herbarium of the University of Provence, Marseille, France.

2.2 Isolation of the volatile oils

Oil samples were isolated from freshly air-dried and powdered aerial parts by hydrodistillation for 2 h, using a Clevenger-type apparatus. Oil yields were then estimated and the oil composition analysed by GC–MS (Hewlett-Packard, Model 5972, capillary GC–quadrupole MS system (EI, 70 eV) fitted with a 25 m × 0.2 mm i.d. fused silica column coated with DB5). Temperature programme was 3 °C min–1 from 60 to 220 °C. Helium was used as carrier gas at a flow of 1 ml min–1.

2.3 Identification of the components

Identification of the components of the volatile oils was based on retention indices 〚23〛 and computer matching with the NBS 75K and WILEY 138 libraries, as well as by comparison of the fragmentation patterns of the mass spectra with those reported in the literature 〚24〛.

3 Results and discussion

The hydrodistillation of the aerial parts gave yellowish oils with a yield (Table 1) from 0.03% (P. and M.) to 0.12% (B.).

Table 1

Essential oil yield.

Locality H. perforatum L. variety Yield (%, w/w)
Val-d’Arc (V.) perforatum 0.10
Pertuis (P.) perforatum 0.03
St Cyr (S.) perforatum 0.08
Mérindol (M.) perforatum 0.03
Bandol (B.) angustifolium DC. 0.12
Meailles (Me.) perforatum 0.05

Thirty-three, 29, 41, 29, 34 and 39 compounds were identified in the essential oil of Hypericum perforatum from V., P., S., M., B., and Me. respectively. The composition of the volatile oils is given in Table 2. Fourteen compounds were present in the essential oil of each tested population, namely β-caryophyllene, caryophyllene oxide, (E)-β-farnesene, γ-cadinene, δ-cadinene, ar-curcumene, cis-calamenene, branched tetradecanol, spathulenol, nerolidol, α-cadinol, 2-methyldodecane, dodecanol, and one unidentified compound; however, these compounds were present at different rates. For example, the amount of β-caryophyllene was up to 28% in P. oil but was only 0.2% in B. oil.

Table 2

Constituents of the essential oil of Hypericum perforatum L.

Components RI Locality
Val-d’Arc (V.) Pertuis (P.) Saint-Cyr (S.) Mérindol (M.) Bandol (B.) Meailles (Me.)
(%) (%) % (%) (%) (%)
α-pinene 936 0.3
β-pinene 975 0.3
limonene 1028 0.3
(E)-β-ocimene 1045 0.3 traces
2-methyldecane 1061 0.5 0.1 0.2
cis-linalyl oxide 1069 0.1
trans-linalyl oxide 1085 0.1
n-undecane 1098 0.3 0.1 0.2 0.1 0.2
linalol 1099 0.5
campholenal 1123 0.3 0.4
octanol 1134 0.2 0.5
pinocarveneol 1138 0.3 0.7
p-mentha-1,5-dien-8-ol 1167 traces 0.6 0.5
terpinen-4-ol 1173 0.1 traces 0.1
p-cymen-8-ol 1186 0.3 0.3
α-terpineol 1192 0.2 0.3 1.5
myrtenol 1198 0.4
safranal 1207 0.3 0.3
cis-carveol 1222 0.5 0.6
2-methyldodecane 1266 0.6 0.4 0.6 0.3 4.0 1.7
n-tridecane 1303 traces 0.3
σ-butyl benzoate 1329 0.5
α-cubebene 1351 0.1 0.7 0.1
α-longipinene 1355 2.8
α-copaene 1379 0.4 0.1 0.2 0.9 0.8
β-bourbonene 1385 0.1
isobutyl isobutyrate 1392 traces 0.1 0.6
β-elemene 1393 0.1
β-funebrene 1414 0.5 0.1 0.6
β-caryophyllene 1425 14.8 28.4 26.1 24.1 0.2 13.3
β-copaene 1431 0.4 0.2 0.4 0.1
isoamyl benzoate 1437 1.7 0.6
aromadendrene 1441 0.3 0.1 0.1 0.2
α-himachalene 1449 0.6 traces traces 0.1 2.6
α-humulene 1454 0.4 0.5 0.4 0.3
(E)-β-farnesene 1459 7.1 3.0 3.6 4.1 0.9 2.4
dodecanol 1478 3.8 3.0 7.5 3.6 0.4 0.8
γ-muurolene 1480 4.3 1.7 7.7 6.9
ar-curcumene 1484 13.0 2.5 0.6 2.9 1.3 0.9
germacrene D 1486 17.8 37.3 6.3 29.1
β-selinene 1492 0.7 1.2 6.0
(Z,E)-α-farnesene 1493 1.1 1.3
α-selinene 1499 2.3 0.8 15.5 3.1 0.5
bicyclogermacrene 1499 5.7 3.8 5.8 0.3
α-muurolene 1501 0.7 0.4 4.8 0.3
β-himachalene 1501 0.3 0.5
(E,E)-α-farnesene 1507 1,0 0.3 1.3 0.7 8.4
γ-cadinene 1513 2.2 3.0 1.3 0.8 2.8 1.6
cis-calamenene 1522 0.4 0.1 0.1 0.9 2.6 0.5
δ-cadinene 1522 4.9 2.7 2.9 0.9 3.2 2.1
α-cadinene 1534 0.2 0.1
calacorene 1538 traces 0.9 0.4
nerolidol 1559 0.7 0.6 0.5 0.1 6.5 1.2
hexenyl benzoate 1563 0.2 0.2 0.9 0.3
spathulenol 1574 0.5 2.5 0.5 2.6 21.1 21.5
caryophyllene oxide 1577 0.5 2.3 1.1 2.0 4.4 18.4
humulene II oxide 1601 0.2 0.6 0.5
branched tetradecanol 1629 1.3 0.8 0.4 0.8 9.1 2.3
T-cadinol 1631 0.4 0.1 0.5
α-cadinol 1642 0.4 0.4 0.5 0.7 1.2 0.3
benzyl benzoate* 1738 0.5
hexahydrofarnesylacetone* 1813 0.7
Identified components (%) 83 91 84 83 76 75

Germacrene D and bicyclogermacrene were present in great amount in the V., P., S., M. and V., P., M. oils, respectively, but were not identified or poorly represented (0.3%) in the B. and Me. oils. Spathulenol was present in great amount in the B. and Me. oils and poorly represented in the other oils. Germacrene D and bicyclogermacrene, known as fragile molecules, may be converted in other compounds as spathulenol. This difference of composition between these analysed oils may only reveal oxidation processes of the oils.

It is interesting to notice the presence of α- or β-himachalene, rare in plant chemistry, in all the H. perforatum var. perforatum oils but not in the angustifolium variety. The oil of the variety angustifolium is poor in farnesene forms, unlike the other oils, which are rich in (E)-β-, (E,E)-α- or (Z,E)-α-farnesene. In the oil of this variety, there is little content of β-caryophyllene and cayophyllene oxide. Hence, a chemical difference between the two varieties may be revealed as demonstrated between H. perforatum var. perforatum and var. angustifolium from Serbia 〚18〛.

The populations from B. and Me. localities should be distinguished from the others by both, fewer content in sesquiterpene hydrocarbons but higher content in oxygenated sesquiterpenes, and more oxygenated monoterpenes, than in the other populations.

Little variability in oil composition among the H. perforatum var. perforatum populations was pointed out in lowland (V., P., S., M.). However changes in oil composition occurred between perforatum (V., P., S., M.) and angustifolium (B.) varieties, and between the population of lowland (V., P., S., M.) and highland (Me.). But, these variations were minor.

In all the analysed oils, sesquiterpenes hydrocarbons and oxygen-containing sesquiterpenes were the main classes of compounds (Table 3). Monoterpenes, oxygenated or not, represented, at the most, 5.9% of the oil (Me.).

Table 3

Percentage of particular classes of compounds in H. perforatum L. essential oil.

Locality
Grouped components Val-d’Arc Pertuis Saint-Cyr Mérindol Bandol Meailles
(V.) (P.) (S.) (M.) (B.) (Me.)
Monoterpene hydrocarbons 1 0 traces 0 0 0.3
Oxygen-containing monoterpenes 0.2 0.1 traces 0.1 2.6 5.6
Sesquiterpene hydrocarbons 76.4 84.4 71.4 81.7 21.5 40.8
Oxygen-containing sesquiterpenes 3.5 6.6 3.5 6.2 44.1 44
Alkanes 1.4 0.7 1 0.4 4 2.2
Alkanols 3.8 3 7.5 3.6 0.6 1.3
Others 14.7 5.2 16.2 8 27.3 6.1

Moreover, compared with previous reports 〚12–17〛 on H. perforatum essential oils from other localities, which are rich in monoterpenoids, particularly, the α-pinene, the composition of all the oils that we analysed greatly differed (Table 4). It is possible that particular features characterise the essential oils from H. perforatum populations of southeastern France. Other research will be done to know whether these particularities could be extended to the composition in hypericin and hypericin-like compounds of the same populations.

Table 4

Plant material, origin, main class of component, and main components of the essential oils of Hypericum perforatum L. previously reported.

Reference Plant material Origin Main class of component Main components
〚7–9〛 aerial parts northeastern France alkanes 2-methyl-octane (45%) α-pinene (24%)
〚10〛 aerial parts middle France monoterpene hydrocarbons α-pinene (15.3%) caryophyllene oxide (10.4%)
〚11〛 aerial parts Italy alkanes 2-methyl-octane (16.4%) α-pinene (10.6%)
〚12〛 leaves India monoterpene hydrocarbons α-pinene (67.3%) β-caryophyllene (5.2%)
〚13〛 aerial parts Turkey monoterpene hydrocarbons α-pinene (61.7%) 3-carene (7.5%)
〚14〛 aerial parts Serbia Non-terpene compounds (alkanes, alcohols, esters, and acids) 1-tetradecanol (5.1 to 23.8%) β-caryophyllene (1.1 to 19.8%)

Version abrégée

Plus de 300 espèces du genre Hypericum sont représentées dans les zones chaudes et tempérées du globe, mais seulement 17 espèces sont présentes en France. Parmi ces espèces, le millepertuis, Hypericum perforatum, est le plus connu, étant utilisé depuis longtemps dans la pharmacopée traditionnelle. Cette plante pérenne des habitats perturbés croît actuellement sur les cinq continents.

Cette espèce a récemment fait l’objet de nombreuses études sur ses constituants chimiques à forte activité biologique. Sa composition en constituants lourds, tels que l’hypéricine, a été très étudiée, mais les composés volatils ont été le sujet d’un nombre restreint de travaux. La présente étude concerne les particularités des huiles essentielles de cette espèce dans le Sud-Est de la France. Des populations récoltées dans six stations distinctes ont été étudiées. Les rendements en huile essentielle varient de 0,03 à 0,12 %. De 29 à 41 composés ont pu être identifiés dans les huiles. Dans l’ensemble des huiles analysées, les sesquiterpènes, oxygénés ou non, sont la classe de composés la plus abondante. La proportion de monoterpènes représente, au plus, 5,9 % des huiles, donc une proportion réduite de ces huiles. Une variabilité réduite de la composition de ces huiles a pu être mise en évidence entre les diverses populations provenant des habitats de plaine, variété perforatum, c’est-à-dire de Val-d’Arc, de Pertuis, de Saint-Cyr et de Mérindol. Les populations de Bandol, variété angustifolium, et de Méailles, habitat en altitude, se distinguent des autres par les plus faibles proportions de sesquiterpènes oxygénés et les plus fortes concentrations de monoterpènes oxygénés. La variété angustifolium de Bandol ne contient ni α-, ni β-himachalène et elle est particulièrement pauvre en β-caryophyllène. Une variation de la composition chimique des huiles essentielles de millepertuis en fonction de la variété est donc envisageable. Par ailleurs, pour une même variété, l’altitude peut influencer la composition chimique de l’huile essentielle.

Ces huiles du Sud-Est de la France ont en commun, dans leur ensemble, d’une part, leur richesse en sesquiterpènes et, d’autre part, une quasi-absence d’α- et de β-pinènes. Ces derniers représentent, au plus, 0,3 % de l’huile. Ces huiles se distinguent donc des huiles essentielles de millepertuis d’autres localités, riches en monoterpènes, dont la composition a été précédemment publiée dans la littérature.


Bibliographie

[〚1〛] H. Coste Flore descriptive et illustrée de la France, de la Corse et des contrées limitrophes, Librairie Scientifique et Technique, Paris, 1937

[〚2〛] L. Emberger Traité de botanique systématique : les végétaux vasculaires, tome 2, Masson, Paris, 1960

[〚3〛] E. Bombardelli; P. Morazzoni Hypericum perforatum, Fitoterapia, Volume 1 (1995), pp. 43-68

[〚4〛] M. Hickey; C. King 100 Families of flowering plants, Cambridge University Press, Cambridge, 1981

[〚5〛] P.A.G.M. De Smet; W.A. Nolen St. John's Wort as an Antidepressant, Brit. Med. J., Volume 313 (1996), p. 241

[〚6〛] Anonymous St. John’s Wort, Med. Lett. Drugs Ther., Volume 39 (1997), pp. 107-108

[〚7〛] K. Linde; G. Ramirez St. John's Wort for depression: an overview and meta-analysis of randomized clinical trials, Brit. Med. J., Volume 313 (1996), p. 253

[〚8〛] J. Bruneton Pharmacognosie, phytochimie, plantes médicinales, coll. Tech. et Doc., Lavoisier, Paris, 1993, pp. 367-369

[〚9〛] H. Schulz; M. Jobert; W.D. Huebner The quantitative EEG as a screening instrument to identify sedative effects of single doses of plant extracts in comparison with diazepam, Phytomedecine, Volume 5 (1998), pp. 449-458

[〚10〛] J. Rabier; A. Charchoglyan; J.-P. Mevy; J. Viano; V. Masotti Production of hypericin and pseudohypericin in shoot cultures of Hypericum perforatum L., Actes des 18es journées « Huiles essentielles et extraits » (special issue), Riv. Ital. EPPOS (1999), pp. 625-630

[〚11〛] C. Mathis; G. Ourisson Étude chimio-taxonomique du genre Hypericum-II, Phytochemistry, Volume 3 (1964), pp. 115-131

[〚12〛] C. Mathis; G. Ourisson Étude chimio-taxonomique du genre Hypericum-III, Phytochemistry, Volume 3 (1964), pp. 133-141

[〚13〛] C. Mathis; G. Ourisson Étude chimio-taxonomique du genre Hypericum-IV, Phytochemistry, Volume 3 (1964), pp. 377-378

[〚14〛] M. Girzu Étude phytochimique de Hypericum perforatum L. (millepertuis) et de Juglans regia L. (noyer) : recherche d'une activité sédative dans des extraits de ces deux espèces, thèse de doctorat, université d'Auvergne, Clermont-Ferrand, France, 1996, p. 214

[〚15〛] F. Chialva; G. Gabri; P.A.P. Liddle; F. Ulian Study on the composition of the essential oil from Hypericum perforatum L. and Teucrium chamaedrys L., Riv. Ital. EPPOS (CA 96), Volume 63 (1981), pp. 286-288

[〚16〛] P. Weyerstahl; U. Splittgerber; H. Marschall; V.K. Kaul Constituents of the leaf essential oil of Hypericum perforatum L. from India, Flavour Fragrance J., Volume 10 (1995), pp. 365-370

[〚17〛] A. Cakir; M.E. Duru; M. Harmandar; R. Ciriminna; S. Passannanti; F. Piozzi Comparison of the volatile oils of Hypericum scabrum L. and Hypericum perforatum in Turkey, Flavour Fragrance J., Volume 12 (1997), pp. 285-287

[〚18〛] N. Mimica-Dukic; I. Ivancev-Tumbas; R. Igic; M. Popovic; O. Gasic The content and composition of essential oil of Hypericum perforatum from Serbia, Pharm. Pharmacol. Lett., Volume 8 (1997), pp. 26-28

[〚19〛] I. Schwob; J.-M. Bessière; J.-P. Mévy; J. Viano Hypericum perforatum de la région PACA: composition de l'huile essentielle, Actes des 19es journées « Huiles essentielles et extraits » (special issue), Riv. Ital. EPPOS (2000), pp. 419-423

[〚20〛] I. Schwob; J.-M. Bessière; M. Dherbomez; J. Viano Composition and antimicrobial activity of the essential oil of Hypericum coris (guttiferae), Fitoterapia, 2001 (accepted)

[〚21〛] I. Schwob, J.-M. Bessière, M. Dherbomez, F. Juteau, J.Viano, Composition chimique et activité antimicrobienne du millepertuis (Hypericum perforatum L.), Actes des 20es journées « Huiles essentielles et extraits » (special issue), Riv. Ital. EPPOS (in press)

[〚22〛] T.G. Tutin; V.H. Heywood; N.A. Burges; D.M. Moore; D.H. Valentine; S.M. Walters; D.A. Webb Flora Europaea, Cambridge University Press, Cambridge, London, New York, Melbourne, 1976

[〚23〛] W. Jennings; T. Shibamoto Qualitative analysis of flavour and fragrance volatiles by glass capillary gas chromatography, Academic Press, New York, 1980

[〚24〛] R.P. Adams Identification of oils by ion trap mass spectrometry, Academic Press, New York, 1989


Commentaires - Politique


Ces articles pourraient vous intéresser

Hypericin biosynthesis in Hypericum hookerianum Wight and Arn: Investigation on biochemical pathways using metabolite inhibitors and suppression subtractive hybridization

Padmesh P. Pillai; Aswati R. Nair

C. R. Biol (2014)


Seasonal variations of volatile constituents of Hemizygia bracteosa (Benth.) Briq. aerial parts from Benin

Salomé Kpoviessi; Pierre Agbani; Fernand Gbaguidi; ...

C. R. Chim (2016)


Effect of vegetable oils on obtaining lipid nanocarriers for sea buckthorn extract encapsulation

Ana-Maria Manea; Camelia Ungureanu; Aurelia Meghea

C. R. Chim (2014)