Plan
Comptes Rendus

Molecular biology and genetics
ArrayExpress: a public database of gene expression data at EBI
[ArrayExpress : une base publique de données d'expression génique à l'EBI]
Comptes Rendus. Biologies, Volume 326 (2003) no. 10-11, pp. 1075-1078.

Résumés

ArrayExpress is a public repository for microarray-based gene expression data, resulting from the implementation of the MAGE object model to ensure accurate data structuring and the MIAME standard, which defines the annotation requirements. ArrayExpress accepts data as MAGE–ML files for direct submissions or data from MIAMExpress, the MIAME compliant web-based annotation and submission tool of EBI. A team of curators supports the submission process, providing assistance in data annotation. Data retrieval is performed through a dedicated web interface. Relevant results may be exported to Expression-Profiler, the EBI based expression analysis tool available online (http://www.ebi.ac.uk/arrayexpress).

ArrayExpress est une base d'archivage publique pour les données d'analyse d'expression génique par microréseaux, résultant de l'implémentation du modèle objet MAGE assurant la structuration correcte des données, et du standard MIAME, qui définit les prérequis en matière d'annotation. ArrayExpress accepte les données directement sous format MAGE–ML ou via MIAMExpress, l'utilitaire de soumission en ligne de l'EBI. Une équipe d'annotateurs accompagne le processus de soumission et fournit une assistance à l'annotation des données. L'interrogation de la base est réalisée via une interface Web dédiée permettant d'exporter les résultats des requêtes vers Expression Profiler, l'outil d'analyse en ligne développé par l'EBI (http://www.ebi.ac.uk/arrayexpress).

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crvi.2003.09.026
Keywords: ArrayExpress, database, Expression Profiler, MAGE–ML, MIAME standard, microarray, MGED ontology
Mots-clés : ArrayExpress, base de données, Expression Profiler, MAGE–ML, Ontologie MGED, MIAME standard, microréseaux

Philippe Rocca-Serra 1 ; Alvis Brazma 1 ; Helen Parkinson 1 ; Ugis Sarkans 1 ; Mohammadreza Shojatalab 1 ; Sergio Contrino 1 ; Jaak Vilo 1 ; Niran Abeygunawardena 1 ; Gaurab Mukherjee 1 ; Ele Holloway 1 ; Misha Kapushesky 1 ; Patrick Kemmeren 1 ; Gonzalo Garcia Lara 1 ; Ahmet Oezcimen 1 ; Susanna-Assunta Sansone 1

1 EMBL Outstation – Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
@article{CRBIOL_2003__326_10-11_1075_0,
     author = {Philippe Rocca-Serra and Alvis Brazma and Helen Parkinson and Ugis Sarkans and Mohammadreza Shojatalab and Sergio Contrino and Jaak Vilo and Niran Abeygunawardena and Gaurab Mukherjee and Ele Holloway and Misha Kapushesky and Patrick Kemmeren and Gonzalo Garcia Lara and Ahmet Oezcimen and Susanna-Assunta Sansone},
     title = {ArrayExpress: a public database of gene expression data at {EBI}},
     journal = {Comptes Rendus. Biologies},
     pages = {1075--1078},
     publisher = {Elsevier},
     volume = {326},
     number = {10-11},
     year = {2003},
     doi = {10.1016/j.crvi.2003.09.026},
     language = {en},
}
TY  - JOUR
AU  - Philippe Rocca-Serra
AU  - Alvis Brazma
AU  - Helen Parkinson
AU  - Ugis Sarkans
AU  - Mohammadreza Shojatalab
AU  - Sergio Contrino
AU  - Jaak Vilo
AU  - Niran Abeygunawardena
AU  - Gaurab Mukherjee
AU  - Ele Holloway
AU  - Misha Kapushesky
AU  - Patrick Kemmeren
AU  - Gonzalo Garcia Lara
AU  - Ahmet Oezcimen
AU  - Susanna-Assunta Sansone
TI  - ArrayExpress: a public database of gene expression data at EBI
JO  - Comptes Rendus. Biologies
PY  - 2003
SP  - 1075
EP  - 1078
VL  - 326
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crvi.2003.09.026
LA  - en
ID  - CRBIOL_2003__326_10-11_1075_0
ER  - 
%0 Journal Article
%A Philippe Rocca-Serra
%A Alvis Brazma
%A Helen Parkinson
%A Ugis Sarkans
%A Mohammadreza Shojatalab
%A Sergio Contrino
%A Jaak Vilo
%A Niran Abeygunawardena
%A Gaurab Mukherjee
%A Ele Holloway
%A Misha Kapushesky
%A Patrick Kemmeren
%A Gonzalo Garcia Lara
%A Ahmet Oezcimen
%A Susanna-Assunta Sansone
%T ArrayExpress: a public database of gene expression data at EBI
%J Comptes Rendus. Biologies
%D 2003
%P 1075-1078
%V 326
%N 10-11
%I Elsevier
%R 10.1016/j.crvi.2003.09.026
%G en
%F CRBIOL_2003__326_10-11_1075_0
Philippe Rocca-Serra; Alvis Brazma; Helen Parkinson; Ugis Sarkans; Mohammadreza Shojatalab; Sergio Contrino; Jaak Vilo; Niran Abeygunawardena; Gaurab Mukherjee; Ele Holloway; Misha Kapushesky; Patrick Kemmeren; Gonzalo Garcia Lara; Ahmet Oezcimen; Susanna-Assunta Sansone. ArrayExpress: a public database of gene expression data at EBI. Comptes Rendus. Biologies, Volume 326 (2003) no. 10-11, pp. 1075-1078. doi : 10.1016/j.crvi.2003.09.026. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/j.crvi.2003.09.026/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

Though microarray techniques have been available for several years and that large amounts of data have been gathered, major breakthroughs are still yet to come. If heterogeneity in technology, platforms and computing options may be blamed for the delay [1], the lack of thought through exchange infrastructure represents the major hurdle. So far, most microarray data have been published on specific web sites. These resources are usually of limited value due to lack of annotation, both in quantity and quality. These limitations, by preventing cross platform analysis and mining, make it almost impossible to fully exploit the data so far accumulated. The genuine complexity and size of data produced by microarray technology has therefore generated a need for setting up guidelines to achieve data exchangeability. To this end, two standards have been devised to solve, first the problem of the structure of the data and second the problem of the amount of information required for microarray experiment annotation. ArrayExpress aims to provide a public repository by implementing these standards and supplying the infrastructure that should favor microarray data exchange and interpretation.

2 Structuring the microarray data

Exchanging data requires common standards to describe, structure and format data in a way that could be implemented irrespective to technical choices. The MAGE–OM object model is a platform-independent data model capable of describing the intrinsic complexity of the microarray-based experiment. The MAGE–ML language, an XML derived language, and its related Data Type Definition has been generated from the MAGE–OM object model [2]. These three elements have now been granted the status of Bioscience standards by the OMG and are gaining broader acceptance among the most prominent industrial and academic players of the field. ArrayExpress and its environment is the first functional implementation of the MAGE–OM object model allowing data submission in MAGE–ML format.

3 The challenge of data annotation

In addition to defining the standards for data structure and modeling, the huge challenge of annotation has to be addressed both in quantity and quality to ensure complete data compatibility and reusability. The MIAME requirements standing for Minimal Information About a Microarray Experiment [3] have been developed to tackle the issue of the amount of information to be supplied. The standard defines for every critical element of a microarray-based experiment, the necessary information to be provided by anyone willing to share the results of his work.

When dealing with quality of annotation, a critical issue is the need for machine processable descriptions. To achieve automated treatment of the information, consistent annotation is a paramount for mining agents to work efficiently; synonyms and free text should therefore be avoided. To this end, an effort has been carried out to develop field specific ontologies, which capture knowledge, and controlled vocabularies to perform efficient microarray experiment annotation. Among those, the Biomaterial Ontology, established by the MGED society, provides a standard way for annotating biological samples from which mRNA are extracted and used in microarray experiments. The ontology itself relates and cross-references to several controlled vocabulary projects and annotation database thus taking advantage of existing effort. The MGED Biomaterial ontology is available at http://www.cbil.upenn.edu/Ontology/MGEDontology.html.

4 Submission routes to ArrayExpress

Based on the experience gained from the sequencing projects [4], adequate submission procedures have been devised depending on submitter's needs. MAGE–ML pipelines have been tailored for institutions involved in high-throughput projects (e.g., The Sanger Center, TIGR, Affymetrix) or microarray computing projects such as BASE [5]. For smaller scale projects or with limited bioinformatics support, MIAME express, a MIAME compliant web-based tool for submission and annotation, is available. MIAMExpress can be used as a submission tool when all experiments are completed or alternately on a daily basis, as an electronic lab-book. The tool provides a simple and robust tool for submitting experiments, protocols and arrays while ensuring appropriate formatting and annotation. The complexity of the MAGE–ML format conversion is taken care of by the tool so that researchers using MIAMExpress are at one click ahead of submission. MIAMExpress is implemented using perl-cgi scripts and stores the data temporarily in a mySQL database. This transient storage has two purposes: (1) store pending submissions and (2) enable quality control of annotation and structure by the microarray curation team. Throughout the submission process, submitters are assisted and guided by the curation team available at arraysubs@ebi.ac.uk. Last, MIAME express can also be set up as a standalone tool and is available as open-source from http://www.sourceforge.net/.

5 Accessing and mining the data

ArrayExpress data can be viewed through a dedicated query form (http://www.ebi.ac.uk/arrayexpress). All submission types can be queried on accession numbers. Type specific (Experiment, Array and Protocol) query fields allow case insensitive searches on e.g. authors, experimental factor, experiment type and species. Results are displayed as short summaries containing a series of links to the different objects. From there, numerical data corresponding to the gene expression levels are made available as tab-separated file. These can then be directed to ExpressionProfiler (http://www.ebi.ac.uk/microarray/ExpressionProfiler/ep.html), the EBI online analysis tool for further analysis and visualization [6]. Finally, MAGE–ML documents can be downloaded as a compressed file directly from the result interface. Note that sequence or gene identifier based queries are not yet supported and further work is needed to implement those. The task is complex and requires integration of a broad variety of resources from within the EBI and other institutions and will require the development of a specific datawarehouse for ArrayExpress. The MAGE–ML formatted content of Array Express database is available on request from arraysubs@ebi.ac.uk.

6 ArrayExpress future

Even though ArrayExpress is now fully functional, allowing submission, query and export to analysis tool, it is still a tool under development and does not yet take advantage of the full power of the MAGE object model. Hence, work is still ongoing to enhance the query capabilities, especially those related to gene and reporter that should enable cross platform and reporter reliability assessment. Integration of query capabilities based on ontology annotations is also scheduled as part as query functionalities. To achieve microarray data exchange, interconnection with other microarray databases such as GEOmnibus at the NCBI [7] and with the CIBEX project at the DDBJ has to be implemented. This requires devising a MAGE–ML export function. A variant application of that export function could be used to transfer MAGE–ML files to private databases in order to perform local assessments. In addition to software related efforts, we are actively working with different centers and consortia to generate high quality MIAME compliant data, examples of these include the International Genomics Consortium (IGC) [8] who intend to profile thousands of tumor samples and deposit the data in ArrayExpress and ILSI Toxicogenomics projects.

Acknowledgements

The ArrayExpress project is funded by EMBL, a grant from the European Commission (TEMBLOR), and a Toxicogenomics database grant from ILSI. Initial funding was provided by Incyte and we particularly thank Lee Grower.


Bibliographie

[1] A. Brazma; A. Robinson; G. Cameron; M. Ashburner One-stop shop for microarray data, Nature, Volume 403 (2000), pp. 699-700

[2] P.T. Spellman; M. Miller; J. Stewart; C. Troup; U. Sarkans; S. Chervitz; D. Bernhart; G. Sherlock; C. Ball; M. Lepage; M. Swiatek; W.L. Marks; J. Goncalves; S. Markel; D. Iordan; M. Shojatalab; A. Pizarro; J. White; R. Hubley; E. Deutsch; M. Senger; B.J. Aronow; A. Robinson; D. Bassett; C.J. Stoeckert; A. Brazma Design and implementation of microarray gene expression markup language (MAGE–ML), Genome Biol., Volume 3 (2002), p. 46.1-46.9

[3] A. Brazma; P. Hingamp; J. Quackenbush; G. Sherlock; P. Spellman; C. Stoeckert; J. Aach; W. Ansorge; C.A. Ball; H.C. Causton; T. Gaasterland; P. Glenisson; F.C.P. Holstege; I.F. Kim; V. Markowitz; J.C. Matese; H. Parkinson; A. Robinson; S. Sarkans; S. Schulze-Kremer; J. Stewart; R. Taylor; J. Vilo; M. Vingron Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nature Genet., Volume 29 (2001), pp. 365-371

[4] G. Stoesser; W. Baker; A.E. van den Broek; E. Camon; P. Hingamp; P. Sterk; M.A. Tuli The EMBL nucleotide sequence database, Nucleic Acids Res., Volume 28 (2000), pp. 19-23

[5] L.H. Saal; C. Troein; J. Vallon-Christersson; S. Gruvberger; A. Borg; C. Peterson BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data, Genome Biol., Volume 3 (2002), p. 3.1-3.6

[6] J. Vilo, M. Kapushesky, P. Kemmeren, U. Sarkans, A. Brazma, Expression profiler, in: G. Parmigiani, E.S. Garrett, R. Irizarry, S.L. Zeger (Eds.), The Analysis of Gene Expression Data: Methods and Software, Springer-Verlag, in press

[7] R. Edgar; M. Domrachev; A. Lash Gene Expression Omnibus: NCBI gene expression and hybridisation array data repository, Nucleic Acids Res., Volume 30 (2002), pp. 207-210

[8] J. Knight Cancer comes under scrutiny in fresh genomics initiative, Nature, Volume 4 (2001), p. 855


Cité par

  • Najma; Anam Farooqui Biological Networks Analysis, Biological Networks in Human Health and Disease (2023), p. 15 | DOI:10.1007/978-981-99-4242-8_2
  • Sara Memar; Eric Jiang; Vania F. Prado; Lisa M. Saksida; Timothy J. Bussey; Marco A. M. Prado Open science and data sharing in cognitive neuroscience with MouseBytes and MouseBytes+, Scientific Data, Volume 10 (2023) no. 1 | DOI:10.1038/s41597-023-02106-1
  • Nicolas Borisov; Anton Buzdin Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect, Biomedicines, Volume 10 (2022) no. 9, p. 2318 | DOI:10.3390/biomedicines10092318
  • Tânia Barata; Vítor Vieira; Rúben Rodrigues; Ricardo Pires das Neves; Miguel Rocha Reconstruction of tissue-specific genome-scale metabolic models for human cancer stem cells, Computers in Biology and Medicine, Volume 142 (2022), p. 105177 | DOI:10.1016/j.compbiomed.2021.105177
  • Mengqiu Sun; Shengnan She; Hengwei Chen; Jiaxi Cheng; Wei Ji; Dan Wang; Chunlai Feng Prediction model for synergistic anti-tumor multi-compound combinations from traditional Chinese medicine based on extreme gradient boosting, targets and gene expression data, Journal of Bioinformatics and Computational Biology, Volume 20 (2022) no. 03 | DOI:10.1142/s0219720022500160
  • Keon Woo Khim; Sun Sil Choi; Hyun-Jun Jang; Yo Han Lee; Eujin Lee; Ji-Min Hyun; Hye-Jin Eom; Sora Yoon; Jeong-Won Choi; Tae-Eun Park; Dougu Nam; Jang Hyun Choi PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPARγ at Ser273, Cells, Volume 9 (2020) no. 2, p. 343 | DOI:10.3390/cells9020343
  • B.V. Vibala; P.K. Praseetha; S. Vijayakumar Evaluating new strategies for anticancer molecules from ethnic medicinal plants through in silico and biological approach - A review, Gene Reports, Volume 18 (2020), p. 100553 | DOI:10.1016/j.genrep.2019.100553
  • Hyun‐Jun Jang; Seyoung Lim; Jung‐Min Kim; Sora Yoon; Chae Young Lee; Hyeon‐Jeong Hwang; Jeong Woo Shin; Kyeong Jin Shin; Hye Yun Kim; Kwang Il Park; Dougu Nam; Ja Yil Lee; Kyungmoo Yea; Yoshio Hirabayashi; Yu Jin Lee; Young Chan Chae; Pann‐Ghill Suh; Jang Hyun Choi Glucosylceramide synthase regulates adipo‐osteogenic differentiation through synergistic activation of PPARγ with GlcCer, The FASEB Journal, Volume 34 (2020) no. 1, p. 1270 | DOI:10.1096/fj.201901437r
  • Insha Zahoor; Amrina Shafi; Khalid Majid Fazili; Ehtishamul Haq Bioinformatics and Medicinal Plant Research: Current Scenario, Essentials of Bioinformatics, Volume III (2019), p. 141 | DOI:10.1007/978-3-030-19318-8_8
  • Farhad Maleki; Katie Ovens; Ian McQuillan; Anthony J. Kusalik Size matters: how sample size affects the reproducibility and specificity of gene set analysis, Human Genomics, Volume 13 (2019) no. S1 | DOI:10.1186/s40246-019-0226-2
  • J.S. Hooiveld-Noeken; R.S.N. Fehrmann; E.G.E. de Vries; M. Jalving Driving innovation for rare skin cancers: utilizing common tumours and machine learning to predict immune checkpoint inhibitor response, Immuno-Oncology Technology, Volume 4 (2019), p. 1 | DOI:10.1016/j.iotech.2019.11.002
  • Sonalisa Pandey; Debashis Sahoo Identification of gene expression logical invariants in Arabidopsis, Plant Direct, Volume 3 (2019) no. 3 | DOI:10.1002/pld3.123
  • Jingpu Zhang; Zuping Zhang; Zixiang Wang; Yuting Liu; Lei Deng; Alfonso Valencia Ontological function annotation of long non-coding RNAs through hierarchical multi-label classification, Bioinformatics, Volume 34 (2018) no. 10, p. 1750 | DOI:10.1093/bioinformatics/btx833
  • Jae Min Lee; Sun Sil Choi; Yo Han Lee; Keon Woo Khim; Sora Yoon; Byung-gyu Kim; Dougu Nam; Pann-Ghill Suh; Kyungjae Myung; Jang Hyun Choi The E3 ubiquitin ligase TRIM25 regulates adipocyte differentiation via proteasome-mediated degradation of PPARγ, Experimental Molecular Medicine, Volume 50 (2018) no. 10, p. 1 | DOI:10.1038/s12276-018-0162-6
  • Jong Hwan Kim; Jong-Luyl Park; Seon-Young Kim Non-negligible Occurrence of Errors in Gender Description in Public Data Sets, Genomics Informatics, Volume 14 (2016) no. 1, p. 34 | DOI:10.5808/gi.2016.14.1.34
  • Agne Antanaviciute; Catherine Daly; Laura A. Crinnion; Alexander F. Markham; Christopher M. Watson; David T. Bonthron; Ian M. Carr GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles, Bioinformatics, Volume 31 (2015) no. 16, p. 2728 | DOI:10.1093/bioinformatics/btv196
  • Shweta Bagewadi; Subash Adhikari; Anjani Dhrangadhariya; Afroza Khanam Irin; Christian Ebeling; Aishwarya Alex Namasivayam; Matthew Page; Martin Hofmann-Apitius; Philipp Senger NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases, Database, Volume 2015 (2015), p. bav099 | DOI:10.1093/database/bav099
  • Eswarayya Ramireddy; Ling Chang; Thomas Schmülling Cytokinin as a mediator for regulating root system architecture in response to environmental cues, Plant Signaling Behavior, Volume 9 (2014) no. 1, p. e27771 | DOI:10.4161/psb.27771
  • Manuel Hiss; Oliver Laule; Rasa M. Meskauskiene; Muhammad A. Arif; Eva L. Decker; Anika Erxleben; Wolfgang Frank; Sebastian T. Hanke; Daniel Lang; Anja Martin; Christina Neu; Ralf Reski; Sandra Richardt; Mareike Schallenberg‐Rüdinger; Peter Szövényi; Theodhor Tiko; Gertrud Wiedemann; Luise Wolf; Philip Zimmermann; Stefan A. Rensing Large‐scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions, The Plant Journal, Volume 79 (2014) no. 3, p. 530 | DOI:10.1111/tpj.12572
  • V. Sharma; I. N. Sarkar Bioinformatics opportunities for identification and study of medicinal plants, Briefings in Bioinformatics, Volume 14 (2013) no. 2, p. 238 | DOI:10.1093/bib/bbs021
  • Roxana Moslehi; James L. Mills; Caroline Signore; Anil Kumar; Xavier Ambroggio; Amiran Dzutsev Integrative transcriptome analysis reveals dysregulation of canonical cancer molecular pathways in placenta leading to preeclampsia, Scientific Reports, Volume 3 (2013) no. 1 | DOI:10.1038/srep02407
  • Susanna Liberti; Francesca Sacco; Alberto Calderone; Livia Perfetto; Marta Iannuccelli; Simona Panni; Elena Santonico; Anita Palma; Aurelio P. Nardozza; Luisa Castagnoli; Gianni Cesareni HuPho: the human phosphatase portal, The FEBS Journal, Volume 280 (2013) no. 2, p. 379 | DOI:10.1111/j.1742-4658.2012.08712.x
  • Hasun Yu; Joon Bang; Yousang Jo; Doheon Lee Combining Neuroinformatics Databases for Multi-Level Analysis of Brain Disorders, Interdisciplinary Bio Central, Volume 4 (2012) no. 3, p. 1 | DOI:10.4051/ibc.2012.4.3.0007
  • Paolo Martini; Davide Risso; Gabriele Sales; Chiara Romualdi; Gerolamo Lanfranchi; Stefano Cagnin Statistical Test of Expression Pattern (STEPath): a new strategy to integrate gene expression data with genomic information in individual and meta-analysis studies, BMC Bioinformatics, Volume 12 (2011) no. 1 | DOI:10.1186/1471-2105-12-92
  • Hannu Turpeinen; Sampo Kukkurainen; Kati Pulkkinen; Timo Kauppila; Kalle Ojala; Vesa P Hytönen; Marko Pesu Identification of proprotein convertase substrates using genome-wide expression correlation analysis, BMC Genomics, Volume 12 (2011) no. 1 | DOI:10.1186/1471-2164-12-618
  • Benjamin Funke; Felix Lasitschka; Wilfried Roth; Roland Penzel; Stefan Meuer; Maria Saile; Norbert Gretz; Bernd Sido; Peter Schirmacher; Frank Autschbach Selective downregulation of retinoic acid-inducible gene I within the intestinal epithelial compartment in crohnʼs disease, Inflammatory Bowel Diseases, Volume 17 (2011) no. 9, p. 1943 | DOI:10.1002/ibd.21572
  • Benjamin Funke Laser Microdissection of Intestinal Epithelial Cells and Downstream Analysis, Laser Capture Microdissection, Volume 755 (2011), p. 189 | DOI:10.1007/978-1-61779-163-5_15
  • Guang Lan Zhang; David S. DeLuca; Vladimir Brusic Database Resources for Proteomics-Based Analysis of Cancer, Protein Microarray for Disease Analysis, Volume 723 (2011), p. 349 | DOI:10.1007/978-1-61779-043-0_22
  • Eric Bareke; Michael Pierre; Anthoula Gaigneaux; Bertrand De Meulder; Sophie Depiereux; Naji Habra; Eric Depiereux PathEx: a novel multi factors based datasets selector web tool, BMC Bioinformatics, Volume 11 (2010) no. 1 | DOI:10.1186/1471-2105-11-528
  • Ming Zhang; Yudong Zhang; Li Liu; Lijuan Yu; Shirley Tsang; Jing Tan; Wenhua Yao; Manjit S Kang; Yongqiang An; Xingming Fan Gene Expression Browser: large-scale and cross-experiment microarray data integration, management, search visualization, BMC Bioinformatics, Volume 11 (2010) no. 1 | DOI:10.1186/1471-2105-11-433
  • Michael Pierre; Benoît DeHertogh; Anthoula Gaigneaux; Bertrand DeMeulder; Fabrice Berger; Eric Bareke; Carine Michiels; Eric Depiereux Meta-analysis of archived DNA microarrays identifies genes regulated by hypoxia and involved in a metastatic phenotype in cancer cells, BMC Cancer, Volume 10 (2010) no. 1 | DOI:10.1186/1471-2407-10-176
  • S. Ozaki; Y. Ogata; K. Suda; A. Kurabayashi; T. Suzuki; N. Yamamoto; Y. Iijima; T. Tsugane; T. Fujii; C. Konishi; S. Inai; S. Bunsupa; M. Yamazaki; D. Shibata; K. Aoki Coexpression Analysis of Tomato Genes and Experimental Verification of Coordinated Expression of Genes Found in a Functionally Enriched Coexpression Module, DNA Research, Volume 17 (2010) no. 2, p. 105 | DOI:10.1093/dnares/dsq002
  • Maté Ongenaert Epigenetic Databases and Computational Methodologies in the Analysis of Epigenetic Datasets, Epigenetics and Cancer, Part B, Volume 71 (2010), p. 259 | DOI:10.1016/b978-0-12-380864-6.00009-2
  • Takeshi Obayashi; Kengo Kinoshita Coexpression landscape in ATTED-II: usage of gene list and gene network for various types of pathways, Journal of Plant Research, Volume 123 (2010) no. 3, p. 311 | DOI:10.1007/s10265-010-0333-6
  • Yao Yu; Kang Tu; Siyuan Zheng; Yun Li; Guohui Ding; Jie Ping; Pei Hao; Yixue Li GEOGLE: context mining tool for the correlation between gene expression and the phenotypic distinction, BMC Bioinformatics, Volume 10 (2009) no. 1 | DOI:10.1186/1471-2105-10-264
  • Hui Yu; Yuan-Yuan Li Recovering context-specific gene network modules from expression data: A brief review, Frontiers of Biology in China, Volume 4 (2009) no. 4, p. 414 | DOI:10.1007/s11515-009-0036-3
  • Ulrich Harttig; Anthony J. Travis; Philippe Rocca-Serra; Marten Renkema; Ben van Ommen; Heiner Boeing Owner controlled data exchange in nutrigenomic collaborations: the NuGO information network, Genes Nutrition, Volume 4 (2009) no. 2, p. 113 | DOI:10.1007/s12263-009-0123-8
  • Sean F. Eddy; Kenneth B. Storey Comparative Molecular Physiological Genomics, Environmental Genomics, Volume 410 (2008), p. 81 | DOI:10.1007/978-1-59745-548-0_6
  • Lyle D. Burgoon; Timothy R. Zacharewski Bioinformatics: Databasing and Gene Annotation, Essential Concepts in Toxicogenomics, Volume 460 (2008), p. 145 | DOI:10.1007/978-1-60327-048-9_7
  • Ben van Ommen; Jaap Keijer; Robert Kleemann; Ruan Elliott; Christian A. Drevon; Harry McArdle; Mike Gibney; Michael Müller The challenges for molecular nutrition research 2: quantification of the nutritional phenotype, Genes Nutrition, Volume 3 (2008) no. 2, p. 51 | DOI:10.1007/s12263-008-0084-3
  • Yoshiyuki Ogata; Nozomu Sakurai; Nicholas J. Provart; Dirk Steinhauser; Leonard Krall Bioinformatics Tools to Discover Co‐Expressed Genes in Plants, The Handbook of Plant Functional Genomics (2008), p. 307 | DOI:10.1002/9783527622542.ch15
  • Tao Wei; Andrew G Geiser; Hui-Rong Qian; Chen Su; Leah M Helvering; Nalini H Kulkarini; Jianyong Shou; Mathias N'Cho; Henry U Bryant; Jude E Onyia DNA microarray data integration by ortholog gene analysis reveals potential molecular mechanisms of estrogen-dependent growth of human uterine fibroids, BMC Women's Health, Volume 7 (2007) no. 1 | DOI:10.1186/1472-6874-7-5
  • M. Waters; S. Stasiewicz; B. Alex Merrick; K. Tomer; P. Bushel; R. Paules; N. Stegman; G. Nehls; K. J. Yost; C. H. Johnson; S. F. Gustafson; S. Xirasagar; N. Xiao; C.-C. Huang; P. Boyer; D. D. Chan; Q. Pan; H. Gong; J. Taylor; D. Choi; A. Rashid; A. Ahmed; R. Howle; J. Selkirk; R. Tennant; J. Fostel CEBS Chemical Effects in Biological Systems: a public data repository integrating study design and toxicity data with microarray and proteomics data, Nucleic Acids Research, Volume 36 (2007) no. Database, p. D892 | DOI:10.1093/nar/gkm755
  • Minghsun Liu; Stephen J Popper; Kathleen H Rubins; David A Relman Early days: genomics and human responses to infection, Current Opinion in Microbiology, Volume 9 (2006) no. 3, p. 312 | DOI:10.1016/j.mib.2006.04.006
  • Toralf Kirsten; Jörg Lange; Erhard Rahm An Integrated Platform for Analyzing Molecular-Biological Data Within Clinical Studies, Current Trends in Database Technology – EDBT 2006, Volume 4254 (2006), p. 399 | DOI:10.1007/11896548_31
  • Lyle D. Burgoon; Paul C. Boutros; Edward Dere; Timothy R. Zacharewski dbZach: A MIAME-Compliant Toxicogenomic Supportive Relational Database, Toxicological Sciences, Volume 90 (2006) no. 2, p. 558 | DOI:10.1093/toxsci/kfj097
  • Roland B. Stoughton APPLICATIONS OF DNA MICROARRAYS IN BIOLOGY, Annual Review of Biochemistry, Volume 74 (2005) no. 1, p. 53 | DOI:10.1146/annurev.biochem.74.082803.133212
  • David Hancock; Michael Wilson; Giles Velarde; Norman Morrison; Andrew Hayes; Helen Hulme; A Joseph Wood; Karim Nashar; Douglas B Kell; Andy Brass maxdLoad2 and maxdBrowse: standards-compliant tools for microarray experimental annotation, data management and dissemination, BMC Bioinformatics, Volume 6 (2005) no. 1 | DOI:10.1186/1471-2105-6-264
  • Mahendra Navarange; Laurence Game; Derek Fowler; Vihar Wadekar; Helen Banks; Nicola Cooley; Fatimah Rahman; Justin Hinshelwood; Peter Broderick; Helen C Causton MiMiR: a comprehensive solution for storage, annotation and exchange of microarray data, BMC Bioinformatics, Volume 6 (2005) no. 1 | DOI:10.1186/1471-2105-6-268
  • Garrett H Anderson; Bruce Veit; Maureen R Hanson The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth, BMC Biology, Volume 3 (2005) no. 1 | DOI:10.1186/1741-7007-3-12
  • Beverly Ventura Mandatory submission of microarray data to public repositories: how is it working?, Physiological Genomics, Volume 20 (2005) no. 2, p. 153 | DOI:10.1152/physiolgenomics.00264.2004
  • Jennifer Colangelo; Michael Lawton; William Pennie The Impact and Challenges of Pan-Omic Approaches in Pharmaceutical Discovery and Development, Surrogate Tissue Analysis (2005), p. 275 | DOI:10.1201/9781420038095.ch17
  • Kiana Toufighi; Siobhan M. Brady; Ryan Austin; Eugene Ly; Nicholas J. Provart The Botany Array Resource: e‐Northerns, Expression Angling, and promoter analyses, The Plant Journal, Volume 43 (2005) no. 1, p. 153 | DOI:10.1111/j.1365-313x.2005.02437.x
  • Richard P. Auburn; David P. Kreil; Lisa A. Meadows; Bettina Fischer; Santiago Sevillano Matilla; Steven Russell Robotic spotting of cDNA and oligonucleotide microarrays, Trends in Biotechnology, Volume 23 (2005) no. 7, p. 374 | DOI:10.1016/j.tibtech.2005.04.002
  • Current awareness on comparative and functional genomics, Comparative and Functional Genomics, Volume 5 (2004) no. 5, p. 448 | DOI:10.1002/cfg.354
  • Christopher J. Penkett; Jürg Bähler Navigating public microarray databases, Comparative and Functional Genomics, Volume 5 (2004) no. 6-7, p. 471 | DOI:10.1002/cfg.427

Cité par 56 documents. Sources : Crossref


Commentaires - Politique