Plan
Comptes Rendus

Differentiation of planar chiral enantiomers of 〚Cp*M(2-alkyl-Phenoxo)〛 〚BF4〛 {M = Rh, Ir} by the trisphat anion
Comptes Rendus. Chimie, Volume 5 (2002) no. 4, pp. 257-262.

Résumés

Precursor oxo-dienyl rhodium and iridium complexes 〚(η5-Cp*)M(η5-2-alkyl-oxodienyl)〛 〚BF4〛 (2a–c) were prepared according to literature procedure. Addition of 〚n-Bu4N〛 〚Δ-trisphat〛 (6) to a CD2Cl2 solution of these chiral derivatives has led to the NMR differentiation of the enantiomers. These results pave the way towards the preparation of enantiomerically pure o-quinone methide complexes.

Les complexes précurseurs oxo-diényl du rhodium et de l’iridium 〚(η5-Cp*)M(η5-2-alkyl-oxodienyl)〛 〚BF4〛 (2a–c) ont été préparés selon une procédure tirée de la littérature. L’addition of 〚n-Bu4N〛 〚Δ-trisphat〛 (6) à une solution de ces dérivés chiraux dans CD2Cl2 a conduit à la différenciation par RMN des énantiomères. Ces résultats ouvrent la voie vers la préparation de complexes énantiomeriquement purs de o-quinone méthide.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0748(02)01372-3
Keywords: chirality, iridium, rhodium, NMR spectroscopy
Mots-clés : chiralité, iridium, rhodium, spectroscopie RMN

Hani Amouri 1 ; René Thouvenot 1 ; Michel Gruselle 1

1 Laboratoire de chimie organique et matériaux moléculaires, UMR 7071 CNRS, université Pierre-et-Marie-Curie (Paris-6), case courrier 42, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRCHIM_2002__5_4_257_0,
     author = {Hani Amouri and Ren\'e Thouvenot and Michel Gruselle},
     title = {Differentiation of planar chiral enantiomers of {〚Cp*M(2-alkyl-Phenoxo)〛} {〚BF\protect\textsubscript{4}〛} {{M~=~Rh,} {Ir}} by the trisphat anion},
     journal = {Comptes Rendus. Chimie},
     pages = {257--262},
     publisher = {Elsevier},
     volume = {5},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-0748(02)01372-3},
     language = {en},
}
TY  - JOUR
AU  - Hani Amouri
AU  - René Thouvenot
AU  - Michel Gruselle
TI  - Differentiation of planar chiral enantiomers of 〚Cp*M(2-alkyl-Phenoxo)〛 〚BF4〛 {M = Rh, Ir} by the trisphat anion
JO  - Comptes Rendus. Chimie
PY  - 2002
SP  - 257
EP  - 262
VL  - 5
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-0748(02)01372-3
LA  - en
ID  - CRCHIM_2002__5_4_257_0
ER  - 
%0 Journal Article
%A Hani Amouri
%A René Thouvenot
%A Michel Gruselle
%T Differentiation of planar chiral enantiomers of 〚Cp*M(2-alkyl-Phenoxo)〛 〚BF4〛 {M = Rh, Ir} by the trisphat anion
%J Comptes Rendus. Chimie
%D 2002
%P 257-262
%V 5
%N 4
%I Elsevier
%R 10.1016/S1631-0748(02)01372-3
%G en
%F CRCHIM_2002__5_4_257_0
Hani Amouri; René Thouvenot; Michel Gruselle. Differentiation of planar chiral enantiomers of 〚Cp*M(2-alkyl-Phenoxo)〛 〚BF4〛 {M = Rh, Ir} by the trisphat anion. Comptes Rendus. Chimie, Volume 5 (2002) no. 4, pp. 257-262. doi : 10.1016/S1631-0748(02)01372-3. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/S1631-0748(02)01372-3/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

o-Quinone methides 〚1, 2〛 (o-QM, 1) are versatile reactive intermediates in organic synthesis 〚3, 4〛 and biochemistry 〚5–7〛. o-QMs act as heterodienes in inter- and intra-molecular Diels–Alder 〚2+4〛 cycloadditions with alkenes to give various substituted chromans (Fig. 1), a key ring system in some natural products. In biochemistry, some antitumor and antibiotic drugs such as mitomycin C are suggested to produce transient electrophilic o-QM intermediates, which can act as alkylating agents of DNA 〚5–7〛. The high reactivity of simple o-QMs (those without substituents on the exocyclic double bond) is illustrated by the fact that in condensed phases the parent compound (1) has only been characterised spectroscopically at temperatures below –100°C. 〚8–13〛 In contrast, we recently reported 〚14–16〛 a general and unprecedented synthetic procedure to Cp*M-η4-o-quinone methide complexes 3 including that of the unsubstituted o-quinone methide (3a). Unlike the parent molecule (1), complex 3a is thermally stable, and yet shows interesting reactivity. We also note that the o-QM complexes of rhodium were found to be less stable than the iridium congeners 〚16〛.

Fig. 1

Diels–Alder 〚2+4〛 cycloadditions with alkenes giving various substituted chromans.

Recently we showed that complexation of the metal in 3a reverses the polarity of the o-QM ligand, leading to nucleophilic character of the exocyclic methylene carbon (=CH2) toward electron-poor alkenes and alkynes 〚15, 16〛. For instance, 3a reacts with methyl propynoate to yield the new o-quinone methide complex 4 as a result of a regioselective coupling reaction between the electrophilic alkyne and the exocyclic carbon (=CH2) of complex 3a. Alternatively, treatment of 3a with N-methylmaleimide gave the tricyclic iridium complex 5 as a result of an unprecedented 〚2+3〛 cycloaddition with part of the o-QM ligand (Fig. 2).

Fig. 2

Treatment of 3a with N-methylmaleimide giving the tricyclic iridium complex 5 as a result of an unprecedented 〚2+3〛 cycloaddition with part of the o-QM ligand.

To explore this unusual reactivity we decided to prepare the enantiomeric pure version of these o-QM complexes (Fig. 3), hoping to carry out asymmetric cycloaddition reactions. To attain this goal, we thought that resolving the precursors 〚Cp*M(2-alkyl-phenoxo)〛 〚BF4〛 M = Rh; alkyl = Me (2a); M = Ir; alkyl = Me (2b); alkyl = i-Pr (2c) (Fig. 4) and subsequent deprotonation by t-BuOK might provide the optically pure o-QM complexes.

Fig. 3

Planar chirality of the o-QM complexes (3).

Fig. 4

Precursors 〚Cp*M(2-alkyl-phenoxo)〛 〚BF4〛 M = Rh; alkyl = Me (2a); M = Ir; alkyl = Me (2b); alkyl = i-Pr (2c).

Lacour, Kundig, Rose and coworkers have shown that the optically pure Δ-trisphat anion (6) {trisphat = tris 〚tetrachlorobenzene-1,2-bis(olato)〛phosphate} (Fig. 5) acts as an efficient NMR chiral reagent, to differentiate between enantiomers of neutral and cationic planar chiral metal complexes 〚17–19〛. On the other hand, we have also shown that this optically pure anion allows discriminating between the two enantiomers of a rare chiral propeller-like cobalt complex 〚(Co2(CO)4)μ,η2, η2-(-H2CC≡CCH2-)(-dppm)2〛 〚BF42 〚20〛.

Fig. 5

Optically pure Δ-trisphat anion (6) {trisphat = tris 〚tetrachlorobenzene-1,2-bis(olato)〛phosphate}.

In this paper we explore and show the capacity and efficiency of the trisphat anion to differentiate by 1H-NMR the cationic planar chiral complexes 〚21, 22〛 〚Cp*M(2-alkyl-phenoxo)〛 〚BF4〛 (2a–c). In addition, the role of the metal centre and that of the 2-alkyl group on the formation of diastereomeric contact ion pairs between the trisphat anion and the metal complexes are presented and discussed.

2 Results and discussion

The racemic complexes of the type 〚Cp*M(2-alkyl-phenoxo)〛 〚BF4〛 (2a–c) were dissolved in CD2Cl2 and their 1H NMR spectra were recorded. Then 〚n-Bu4N〛 〚Δ-trisphat〛 (6) was added to the NMR tube. For instance, to an NMR tube containing a solution of 〚Cp*Rh(2-Me-phenoxo)〛 〚BF4〛 (2a) (8.9 mg, 0.02 mmol) were added aliquots of 〚n-Bu4N〛 〚Δ-trisphat〛 (6) as a solid and the NMR spectrum was recorded. Fig. 6 shows several NMR spectra recorded as a function of number of equivalents of trisphat added to 2a. These spectra show significant changes in the aromatic region, such as a general shielding of the multiplets accompanied with broadening of the signals (Fig. 6). However, the overlap of these various multiplets does not allow delineating this effect. In contrast, we note that the singlet attributed to the 2-methyl group is very sensitive and splits into two identical peaks with fulfilled baseline-to-baseline separation after addition of 5 equiv of trisphat (Fig. 7). Hence the enantiomeric ratio can be easily determined by direct integration of the separated signals.

Fig. 6

Sections of the 300 MHz 1H-NMR spectra of racemic 2a,a’ in the absence (a) and in the presence of Δ-trisphat (6) 〚0.75 equiv (b), 1.25 equiv (c) and 2.5 equiv (d)〛. The * symbol designates the protons attributed to 〚n-Bu4N〛-group.

Fig. 7

Comparative study of the methyl resonances splitting for diluted solutions of racemic 2a,a’ (abbreviated Rh(Me)), 2b,b’ (abbreviated Ir(Me)) and 2c,c’ (abbreviated Ir(i-Pr)), in the presence of 5 equiv of Δ-trisphat. The splitting Δδ, expressed in ppb (10–3 ppm), is given under each resonance signal.

These exciting results stimulated us to study the behaviour of the iridium–phenoxo congener 〚Cp*Ir(2-Me-phenoxo)〛 〚BF4〛 (2b). We thought that changing the metal centre could induce a different behaviour on the ion-pair contact between the trisphat anion and the cationic complex. Thus, repeating the precedent experiment but using 〚Cp*Ir(2-Me-phenoxo)〛 〚BF4〛 (2b), we have found that (Fig. 8) more equivalents of 〚n-Bu4N〛 〚Δ-trisphat〛 (6) were required to observe the beginning of the signal splitting (ca. 1.25 equiv were needed, compared to 0.75 equiv in the case of 2a). Nevertheless, at 5 equiv of trisphat anion, the separation of the two methyl signals is complete (Fig. 7). Similarly, the aromatic protons are sensitive to trisphat addition; nevertheless, no defined information could be obtained.

Fig. 8

Sections of the 300 MHz 1H-NMR spectra of racemic 2b,b’ in the absence (a) and in the presence of Δ-trisphat (6) 〚0.75 equiv (b), 1.25 equiv (c) and 2.5 equiv (d)〛. The * symbol designates the protons attributed to 〚n-Bu4N〛-group.

Pursuing our NMR experiments we chose to study the 〚Cp*Ir(2-i-Pr-phenoxo)〛 〚BF4〛 (2c), which has a bulky group attached at C-2, and hence the influence of the trisphat anion might be reduced. Addition of aliquots of 〚n-Bu4N〛 〚Δ-trisphat〛 (6) to a CD2Cl2 solution of complex 2c was carried out and the NMR spectra were recorded. A higher amount of trisphat equiv (ca 2.5) was required to induce the beginning of a change in the NMR signals (Fig. 9). Interestingly, the two diastereotopic Me-groups of the 2-i-Pr behaved differently; for instance, at 5 equiv of trisphat, one of them was nearly completely split, while the other Me-group started to split into two twin signals (Fig. 7). These results suggest that the trisphat anion interaction is effective but less specific, compared to what was observed with complexes 2a,b (Fig. 9). In addition, the difference in behaviour between the two methyl groups suggests that ion-pair interaction is different for every methyl group of the i-Pr moiety.

Fig. 9

Sections of the 300 MHz 1H-NMR spectra of racemic 2c, in the absence (a) and in the presence of Δ-trisphat (6) 〚0.75 equiv (b), 1.25 equiv (c) and 2.5 equiv (d)〛.

3 Concluding remarks

In this paper we have shown that the trisphat anion is an efficient chiral reagent to differentiate between the two enantiomers of cationic rhodium and iridium phenoxo complexes 〚Cp*M(2-alkyl-phenoxo)〛 〚BF4〛 (2a–c). We feel that the cationic nature of these compounds is important for the differentiation process. Future efforts are under way to resolve these enantiomers and to deprotonate them in view of obtaining pure o-QM complexes.

4 Experimental section

4.1 Synthesis of 〚Cp*M(2-alkyl-phenoxo)〛 〚BF4〛 (2a–c)

These complexes were prepared according to previously described procedures 〚14–16〛.

4.2 Synthesis of 〚n-Bu4N〛 〚Δ-trisphat〛 (6)

This chiral shift reagent was prepared according to Lacour’s procedure 〚17〛.

4.3 Typical procedure for the NMR chiral shift experiment with the cationic rhodium and iridium complexes (2a–c)

0.02 mmol of the required 2-alkyl-phenoxo complex was dissolved in 500 μL of CD2Cl2 and the spectrum was recorded. Then aliquots of 0.25 equiv of the 〚n-Bu4N〛 〚Δ-trisphat〛 (6) salt were added and the spectrum was systematically recorded.

Acknowledgements

We would like to thank CNRS and UPMC for supporting this work.


Bibliographie

[〚1〛] H.U. Wagner; R. Gompper The Chemistry of the Quinonoid Compounds (S. Patai, ed.), Wiley, New York, 1974, p. 1145

[〚2〛] P. Wan; B. Barker; L. Diao; M. Fischer; Y. Shi; C. Yang Can. J. Chem., 74 (1996), p. 465

[〚3〛] G. Desimoni; G. Tacconi Chem. Rev., 75 (1975), p. 651

[〚4〛] D.L. Boger; S.N. Weinerb Hetero Diels–Alder Methodology in Organic Synthesis, Academic Press, New York, 1987

[〚5〛] M. Tomasz; A.K. Chawla; R. Lipman Biochemistry, 27 (1988), p. 3182

[〚6〛] M. Egberston; S.J. Danishefsky J. Am. Chem. Soc., 109 (1987), p. 2204

[〚7〛] A. Ouyang; E.B. Skibo J. Org. Chem., 63 (1998), p. 1893

[〚8〛] C.L. McIntosh; O.L. Chapman J. Chem. Soc., Chem. Commun. (1971), p. 771

[〚9〛] V. Eck; A. Schweig; H. Vermeer Tetrahedron Lett., 27 (1978), p. 2433

[〚10〛] M. Letulle; P. Guenot; J.L. Rippol Tetrahedron Lett., 32 (1991), p. 2013

[〚11〛] H. Tomioka Pure Appl. Chem., 69 (1997), p. 837

[〚12〛] H. Tomioka; T. Matsushita Chem. Lett., 5 (1997), p. 399

[〚13〛] G.G.H. Qiao; K. Lenghaus; D.H. Solomon; A. Reisinger; I. Bytheway; C.J. Wentrup Org. Chem., 63 (1998), p. 9806

[〚14〛] H. Amouri; Y. Besace; J. Le Bras; J. Vaissermann J. Am. Chem. Soc., 120 (1998), p. 6171

[〚15〛] H. Amouri; J. Vaissermann; M.N. Rager; D.B. Grotjahn Organometallics, 19 (2000), p. 1740

[〚16〛] H. Amouri; M.N. Rager; J. Vaissermann; D.B. Grotjahn Organometallics, 19 (2000), p. 5143

[〚17〛] J.G. Planas; D. Prim; E. Rose; F. Rose-Munch; D. Monchaud; J. Lacour Organometallics, 20 (2001), p. 4107

[〚18〛] H. Ratni; J.J. Jodry; J. Lacour; E.P. Kundig Organometallics, 19 (2000), p. 3997

[〚19〛] J. Lacour; C. Ginglinger; C. Grivet; G. Bernardinelli Angew. Chem. Int. Ed. Engl., 36 (1997), p. 608

[〚20〛] H. Amouri; R. Thouvenot; M. Gruselle; B. Malézieux; J. Vaissermann Organometallics, 20 (2001), p. 1904

[〚21〛] M. Otto; B.J. Boone; A.M. Arif; J.A. Gladysz J. Chem. Soc., Dalton Trans., 1218 (2001) (and references therein)

[〚22〛] K. Schologl Top. Curr. Chem., 125 (1984), p. 29


Cité par

  • Antoine Groué; Jean-Philippe Tranchier; Geoffrey Gontard; Marion Jean; Nicolas Vanthuyne; Hani Amouri Enantiopure Cyclometalated Rh(III) and Ir(III) Complexes Displaying Rigid Configuration at Metal Center: Design, Structures, Chiroptical Properties and Role of the Iodide Ligand, Chemistry, Volume 4 (2022) no. 1, p. 156 | DOI:10.3390/chemistry4010014
  • REFERENCES, Differentiation of Chiral Compounds Using NMR Spectroscopy (2018), p. 491 | DOI:10.1002/9781119324782.refs
  • Jamal Moussa; Aruny Loch; Lise-Marie Chamoreau; Alessandra Degli Esposti; Elisa Bandini; Andrea Barbieri; Hani Amouri Luminescent Cyclometalated Platinum Complexes with π-Bonded Catecholate Organometallic Ligands, Inorganic Chemistry, Volume 56 (2017) no. 4, p. 2050 | DOI:10.1021/acs.inorgchem.6b02731
  • Hugo Sesolis; Julien Dubarle‐Offner; Carmen K. M. Chan; Emmanuel Puig; Geoffrey Gontard; Pierre Winter; Andrew L. Cooksy; Vivian W. W. Yam; Hani Amouri Highly Phosphorescent Crystals of Square‐Planar Platinum Complexes with Chiral Organometallic Linkers: Homochiral versus Heterochiral Arrangements, Induced Circular Dichroism, and TD‐DFT Calculations, Chemistry – A European Journal, Volume 22 (2016) no. 24, p. 8032 | DOI:10.1002/chem.201601161
  • Jamal Moussa; Lise Marie Chamoreau; Maria Pia Gullo; Alessandra Degli Esposti; Andrea Barbieri; Hani Amouri Induced phosphorescence from Pt → Ag and Ag(i)⋯Ag(i) metallophilic interactions in benzenedithiolatodiimine-Pt2/Ag2 clusters: a combined experimental and theoretical investigation, Dalton Transactions, Volume 45 (2016) no. 7, p. 2906 | DOI:10.1039/c5dt03702f
  • Jamal Moussa; Lise-Marie Chamoreau; Alessandra Degli Esposti; Maria Pia Gullo; Andrea Barbieri; Hani Amouri Tuning Excited States of Bipyridyl Platinum(II) Chromophores with π-Bonded Catecholate Organometallic Ligands: Synthesis, Structures, TD-DFT Calculations, and Photophysical Properties, Inorganic Chemistry, Volume 53 (2014) no. 13, p. 6624 | DOI:10.1021/ic500232w
  • Aurelie Damas; Hugo Sesolis; Marie Noelle Rager; Lise Marie Chamoreau; Maria Pia Gullo; Andrea Barbieri; Hani Amouri Ester-substituted cyclometallated rhodium and iridium coordination assemblies with π-bonded dioxolene ligand: synthesis, structures and luminescent properties, RSC Adv., Volume 4 (2014) no. 45, p. 23740 | DOI:10.1039/c4ra01185f
  • Jamal Moussa; Lise Marie Chamoreau; Hani Amouri Planar Chiral Iridium Complexes with the Δ‐TRISPHAT Anion: Toward the First Enantiopure o‐Quinone Methide π‐Complex, Chirality, Volume 25 (2013) no. 8, p. 449 | DOI:10.1002/chir.22183
  • Aurélie Damas; Lise-Marie Chamoreau; Andrew L. Cooksy; Anny Jutand; Hani Amouri π-Bonded Dithiolene Complexes: Synthesis, Molecular Structures, Electrochemical Behavior, and Density Functional Theory Calculations, Inorganic Chemistry, Volume 52 (2013) no. 3, p. 1409 | DOI:10.1021/ic302128q
  • Jamal Moussa; Keith Man-Chung Wong; Xavier F. Le Goff; Marie Noelle Rager; Carmen Ka-Man Chan; Vivian Wing-Wah Yam; Hani Amouri Dinuclear Platinum(II) Terpyridyl Complexes with a para-Diselenobenzoquinone Organometallic Linker: Synthesis, Structures, and Room-Temperature Phosphorescence, Organometallics, Volume 32 (2013) no. 17, p. 4985 | DOI:10.1021/om400700t
  • Julien Dubarle-Offner; Marion Barbazanges; Mylène Augé; Christophe Desmarets; Jamal Moussa; M. Rosa Axet; Cyril Ollivier; Corinne Aubert; Louis Fensterbank; Vincent Gandon; Max Malacria; Geoffrey Gontard; Hani Amouri Gold Compounds Anchored to a Metalated Arene Scaffold: Synthesis, X-ray Molecular Structures, and Cycloisomerization of Enyne, Organometallics, Volume 32 (2013) no. 6, p. 1665 | DOI:10.1021/om301101z
  • Eike B. Bauer Chiral-at-metal complexes and their catalytic applications in organic synthesis, Chemical Society Reviews, Volume 41 (2012) no. 8, p. 3153 | DOI:10.1039/c2cs15234g
  • Julien Dubarle-Offner; M. Rosa Axet; Lise Marie Chamoreau; Hani Amouri; Andrew L. Cooksy Enantiomerically Pure, Planar Chiral Cp*Ru Complexes: Synthesis, Molecular Structures, DFT and Coordination Properties, Organometallics, Volume 31 (2012) no. 12, p. 4429 | DOI:10.1021/om300210c
  • Thomas J. Wenzel; Cora D. Chisholm Using NMR spectroscopic methods to determine enantiomeric purity and assign absolute stereochemistry, Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59 (2011) no. 1, p. 1 | DOI:10.1016/j.pnmrs.2010.07.003
  • Jérôme Vachon; Gérald Bernardinelli; Jérôme Lacour Resolution of the First Nonracemic Diquats, Chemistry – A European Journal, Volume 16 (2010) no. 9, p. 2797 | DOI:10.1002/chem.200902562
  • Aurélie Damas; Jamal Moussa; Marie Noelle Rager; Hani Amouri Chiral octahedral bimetallic assemblies with Δ‐TRISPHAT as counter anion: Design, anion metathesis, and Cp*Ir as a probe for chiral recognition, Chirality, Volume 22 (2010) no. 10, p. 889 | DOI:10.1002/chir.20882
  • Jamal Moussa; Vincent Gandon; Marie Noelle Rager; Max Malacria; Lise‐Marie Chamoreau; Hani Amouri An Unusual Anion–π Interaction in an ;rido Organometallic Assembly: Synthesis, First Crystal Structure, and Computational Study, European Journal of Inorganic Chemistry, Volume 2009 (2009) no. 25, p. 3703 | DOI:10.1002/ejic.200900497
  • Céline Pérollier; Gérald Bernardinelli; Jérôme Lacour Sugar derived hexacoordinated phosphates: Chiral anionic auxiliaries with general asymmetric efficiency, Chirality, Volume 20 (2008) no. 3-4, p. 313 | DOI:10.1002/chir.20441
  • N.A. Williams Compounds containing a Spiro Phosphorus Atom, Comprehensive Heterocyclic Chemistry III (2008), p. 1065 | DOI:10.1016/b978-008044992-0.01121-4
  • L. Mimassi; C. Cordier; C. Guyard-Duhayon; B. E. Mann; H. Amouri Chiral Supramolecular Triangular Hosts:  Anion Metathesis, Solution Behavior, and High Stability of the Metal Configuration, Organometallics, Volume 26 (2007) no. 4, p. 860 | DOI:10.1021/om060756s
  • M. Angeles Paz-Sandoval; Irma Idalia Rangel-Salas Half-open metallocenes with heterodienyl ligands and related compounds, Coordination Chemistry Reviews, Volume 250 (2006) no. 9-10, p. 1071 | DOI:10.1016/j.ccr.2005.11.002
  • Delphine Bas; Thomas Bürgi; Jerôme Lacour; Jerôme Vachon; Jacques Weber Vibrational and electronic circular dichroism of Δ-TRISPHAT [tris(tetrachlorobenzenediolato)phosphate(V)] anion, Chirality, Volume 17 (2005) no. S1, p. S143 | DOI:10.1002/chir.20131
  • Michel Gruselle; René Thouvenot; Bernard Malézieux; Cyrille Train; Patrick Gredin; Tatiana V. Demeschik; Ludmila L. Troitskaya; Viatcheslav I. Sokolov Enantioselective Self‐Assembly of Bimetallic [MnII (Δ)‐CrIII(C2O4)3]− and [MnII (Λ)‐CrIII(C2O4)3]− Layered Anionic Networks Templated by the Optically Active (Rp)‐ and (Sp)‐[1‐CH2N(n‐C3H7)3‐2‐CH3C5H3FeC5H5]+ Ions, Chemistry – A European Journal, Volume 10 (2004) no. 19, p. 4763 | DOI:10.1002/chem.200305760
  • Lamia Mimassi; Carine Guyard-Duhayon; Marie Noelle Rager; Hani Amouri Chiral Recognition and Resolution of the Enantiomers of Supramolecular Triangular Hosts:  Synthesis, Circular Dichroism, NMR, and X-ray Molecular Structure of [Li⊂(R,R,R)-Cp*Rh(5-chloro-2,3-dioxopyridine)3][Δ-Trisphat], Inorganic Chemistry, Volume 43 (2004) no. 21, p. 6644 | DOI:10.1021/ic049361w
  • Michel Gruselle; René Thouvenot; Régis Caspar; Kamal Boubekeur; Hani Amouri; Mikhael Ivanov; Kaia Tõnsuaadu Efficient resolution of the cis-[Ru(phen)2(MeCN)2]2+ complex (phen = 1,10-phenanthroline) using Δ-[tris(tetrachlorobenzenediolato)-phosphate(V)] as a chiral counter-ion, Mendeleev Communications, Volume 14 (2004) no. 6, p. 282 | DOI:10.1070/mc2004v014n06abeh002034
  • Hani Amouri; Régis Caspar; Michel Gruselle; Carine Guyard-Duhayon; Kamal Boubekeur; Daniel A. Lev; Laura S. B. Collins; Douglas B. Grotjahn Chiral Recognition and Resolution Mediated by π−π Interactions:  Synthesis and X-ray Structure of trans-[(Sp,Sp)-bis(Cp*Ru)-carbazolyl][Δ-Trisphat], Organometallics, Volume 23 (2004) no. 19, p. 4338 | DOI:10.1021/om049453t
  • France Favarger; Catherine Goujon-Ginglinger; David Monchaud; Jérôme Lacour Large-Scale Synthesis and Resolution of TRISPHAT [Tris(tetrachlorobenzenediolato) Phosphate(V)] Anion, The Journal of Organic Chemistry, Volume 69 (2004) no. 24, p. 8521 | DOI:10.1021/jo048641q
  • Régis Caspar; Hani Amouri; Michel Gruselle; Christine Cordier; Bernard Malézieux; Raphäel Duval; Hubert Leveque Efficient Asymmetric Synthesis of Δ‐ and Λ‐Enantiomers of (Bipyridyl)ruthenium Complexes and Crystallographic Analysis of Δ‐Bis(2,2′‐bipyridine)(2,2′‐bipyridine‐4,4′‐dicarboxylato)ruthenium: Diastereoselective Homo‐ and Heterochiral Ion Pairing Revisited, European Journal of Inorganic Chemistry, Volume 2003 (2003) no. 3, p. 499 | DOI:10.1002/ejic.200390071

Cité par 28 documents. Sources : Crossref


Commentaires - Politique