Plan
Comptes Rendus

Rare-earth-doped transparent glass ceramics
Comptes Rendus. Chimie, Volume 5 (2002) no. 12, pp. 845-854.

Résumés

Glass ceramics are a known class of polycrystalline ceramic materials, where, depending on the glass matrix and the particular crystalline phases, one can obtain materials with improved mechanical, thermal, electrical or optical properties. The characteristics and applications of optical glass ceramics are reviewed, with particular emphasis on rare-earth-doped transparent glass ceramics for photonics, including the search for new transparent glass ceramic compositions and the development of suitable methods to process such materials into functional devices.

Les vitrocéramiques constituent une classe bien connue de matériaux céramiques polycristallins qui, selon la matrice vitreuse et les phases cristallines, possèdent des propriétés mécaniques, thermiques, électriques ou optiques améliorées. Les caractéristiques et les applications optiques des vitrocéramiques sont passées en revue, avec une insistance particulière sur les vitrocéramiques transparentes et dopées en terres rares pour application photonique, incluant les recherches effectuées sur les compositions de nouvelles vitrocéramiques transparentes et le développement des méthodes appropriées pour inclure de tels matériaux dans des dispositifs possédant une fonction particulière.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0748(02)01457-1
Keywords: rare earth, glass ceramics, photonics
Mots-clés : terres rares, vitrocéramiques, photonique

M. Clara Gonçalves 1 ; Luís F. Santos 1 ; Rui M. Almeida 1

1 Departamento de Engenharia de Materiais / ICEMS, Instituto Superior Técnico, av. Rovisco Pais, 1049-001 Lisboa, Portugal
@article{CRCHIM_2002__5_12_845_0,
     author = {M. Clara Gon\c{c}alves and Lu{\'\i}s F. Santos and Rui M. Almeida},
     title = {Rare-earth-doped transparent glass ceramics},
     journal = {Comptes Rendus. Chimie},
     pages = {845--854},
     publisher = {Elsevier},
     volume = {5},
     number = {12},
     year = {2002},
     doi = {10.1016/S1631-0748(02)01457-1},
     language = {en},
}
TY  - JOUR
AU  - M. Clara Gonçalves
AU  - Luís F. Santos
AU  - Rui M. Almeida
TI  - Rare-earth-doped transparent glass ceramics
JO  - Comptes Rendus. Chimie
PY  - 2002
SP  - 845
EP  - 854
VL  - 5
IS  - 12
PB  - Elsevier
DO  - 10.1016/S1631-0748(02)01457-1
LA  - en
ID  - CRCHIM_2002__5_12_845_0
ER  - 
%0 Journal Article
%A M. Clara Gonçalves
%A Luís F. Santos
%A Rui M. Almeida
%T Rare-earth-doped transparent glass ceramics
%J Comptes Rendus. Chimie
%D 2002
%P 845-854
%V 5
%N 12
%I Elsevier
%R 10.1016/S1631-0748(02)01457-1
%G en
%F CRCHIM_2002__5_12_845_0
M. Clara Gonçalves; Luís F. Santos; Rui M. Almeida. Rare-earth-doped transparent glass ceramics. Comptes Rendus. Chimie, Volume 5 (2002) no. 12, pp. 845-854. doi : 10.1016/S1631-0748(02)01457-1. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/S1631-0748(02)01457-1/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Glass ceramics – historical view

Glass ceramics, discovered by S.D. Stookey (Corning Glass Works, USA) in the mid-1950s 〚1–4〛, are polycrystalline ceramic materials, formed through the controlled nucleation and crystallisation of glass, where the amount of residual glassy phase is usually less than 50%. The precursor glass is melted, quenched and shape-processed and is then thermally converted into a composite material formed by a crystalline phase dispersed within a glass matrix. The basis of controlled internal crystallisation lies in efficient nucleation, often enabled by a small amount of a nucleating agent, that allows the development of fine, randomly oriented grains, in a ceramic generally without voids, microcracks, or other porosity 〚5〛.

The development of practically useful glass ceramics is relatively recent, but the first attempts in this direction may be referenced to Réaumur 〚6〛, as long ago as 1739, who produced polycrystalline materials from soda–lime–silica glass; yet the control of the crystallisation process was not achieved. Further, the crystallisation was initiated at the surface, resulting in weak and brittle articles. Only some 200 years after Réaumur’s work, a directed research program started at Corning Glass Works, leading to the discovery of photosensitive glasses 〚1–4〛 and to the first glass ceramics patents, PYROFLAM® 〚7〛 and VISIONS® 〚8〛. These contain small amounts of copper, silver or gold, which can be precipitated in the form of very small crystals during heat treatment of the precursor glasses. Stookey 〚1–4〛 successfully made use of colloidal particles precipitated within the glass, as nucleation sites for its controlled crystallisation. Stookey developed a wide range of glass compositions that contained titanium dioxide as the nucleating agent, which promoted phase separation. Since then, many different types of nucleating agents for glass-ceramic production have been reported 〚5〛.

From the early times of glass fabrication, the emphasis has been on preventing devitrification from occurring. Devitrification implies the growth of crystalline material and, if this occurs during the later stages of melting or during the shaping of glass, it has a very harmful effect. Therefore, many studies of devitrification have been carried out, in order to develop an understanding of the phenomenon and to enable it to be suppressed or controlled. Although some glass compositions are self-nucleating and volume nucleation occurs, crystallisation or devitrification in vitreous systems occurs most readily from the surface, where crystals are nucleated by flaws or other defect sites. Two kinetic processes are well known to precede devitrification: phase separation by nucleation and growth, the latter is generally or by spinodal decomposition. So far, only nucleation–growth has been shown to lead to optically transparent glass-ceramic material. Spinodal decomposition is generally viewed as a negative effect, since there is loss of glass transparency 〚9〛.

Depending on the glass host and the crystal phase compositions, one can obtain materials with improved mechanical, thermal, electrical or optical properties. The applications of glass ceramics have covered six major categories up to now – cook-top panels, dinnerware, electronics, medicine and dentistry, tough glass ceramics and optical materials. Low thermal expansion cook-top panels, woodstove windows and fire doors, represent today the commercially most attractive glass-ceramic product. In electronics, glass ceramics have found major application in microelectronic packaging and products like Fotoform® 〚10〛, Fotoceram® 〚10〛 and Foturan® 〚11〛 have been registered. In dentistry and medicine, where bioglass ceramics found wide use as implants for dental and bone prostheses, a series of new products have been developed and patented under the trademarks Bioglass® 〚12〛, Fluoride Bioglass® 〚13〛, Ceravital® 〚14〛, and Cerabone® 〚15〛. Natural bones and teeth are multiphase materials with specific properties very difficult to simulate, where glass devitrification appears to be a very effective way to achieve improved properties, including machinability. Tough glass ceramics have been developed since the first well-known Macor® product 〚16〛, in which the easily cleaved crystalline mica decreased the sensitivity to flaw propagation to such an extent that it could be machined with normal metallic tools. At Corning Glass Works, a variety called Dicor® 〚17〛 was developed for use in dental restoration and, at the Otto Schott Institute in Jena 〚18〛, similar products have been developed. Special optical materials, where the dimensional stability, luminescence, or photosensitivity characteristics of glass ceramics can be exploited in a variety of new applications, including photorefractivity, non-linear optical behaviour or optical amplification, have also been fabricated. The best-known commercial optical glass-ceramic is Zerodur®, produced by Schott 〚19〛, first designed for large telescope mirror blanks, but now routinely used for laser gyroscopes in airplanes. The key property requirement in all these glass-ceramic applications is an extremely low coefficient of thermal expansion in the temperature interval of work.

The state-of-the-art in a new class of transparent glass-ceramic (TGC) materials will be discussed in the present paper, in connection with photonics. Two main aspects are related to the development of a new optical technology, the first being the search of novel material properties and the second, of equal importance, being the development of suitable methods to process these materials into functional devices. Both aspects are reviewed in the sections below, with emphasis on the first one.

2 Transparent glass ceramics

TGC can be obtained under several conditions, where the achievement of low optical absorption and scattering is essential. According to the Rayleigh–Gans theory, crystal sizes well bellow the wavelength of the incident light present negligible attenuation due to scattering, which, for visible light, represents particle radii lower than ∼15 nm 〚20〛. A refractive index difference between the amorphous and crystalline phases of less than 0.1 is also required 〚20〛. However, according to Beall and Pinckney 〚20〛, based on Hopper’s model 〚21〛, crystal sizes of 30 nm and differences in refractive index of 0.3 may be acceptable, provided the crystal spacing is not more than six times the average crystal size. TGC can also be obtained for even larger crystal sizes, if optical isotropy is achieved within the glass ceramic. In fact, β-quartz crystals up to 10 μm, in the SiO2–Al2O3–MgO–ZnO–ZrO2 system, still provide good transparency in the glass ceramic 〚20〛.

Some of the most promising applications of TGC are: large telescope mirror blanks, liquid crystal displays, solar cells and photonic devices. Precision optical equipment, such as telescope mirrors, requires extremely low expansion coefficient and high transmission. Glass ceramics such as Zerodur® – an aluminosilicate glass with 50-nm β-quartz crystals and with 70% of crystalline phase – has almost zero thermal expansion (0 ± 0.02 × 10–6 K–1) in the temperature range of 0–100 °C and ∼ 90% transmittance between 0.6 and 2.0 μm 〚5, 9〛.

Liquid crystal displays for laptop computers are based on TGC of lithium aluminosilicate compositions, with β-quartz solid solution as the crystal phase, as developed by Nippon Electric Glass Co. (Japan), under the name of Neoceram® N-0 〚22〛.

Solar cells and photonic devices require high transmission and efficient luminescence, respectively. TGC containing Cr-doped mullite can be used both in laser applications and solar concentrators 〚5〛.

2.1 Photonics applications

Photonics may be defined as the technology of information transfer by means of light 〚23〛. Optical non-linearity of materials forms the basis of this ultimate technological revolution, which follows the electronics era.

2.1.1 Laser emission

A laser is a source of monochromatic radiation of high intensity, coherence and directionality, in the ultraviolet, visible or infrared optical regions. The laser mechanism is based on the radiative process of stimulated emission. A requirement of laser action is the existence of a metastable excited state with a long lifetime, as the starting level of stimulated emission. Another requirement is the existence of a larger population in this initial metastable state than in the final state, corresponding to the phenomenon of population inversion 〚24〛.

Three or four energy-level schemes are used to reach these emission processes, responsible for laser action. The energy levels involved belong to rare-earth (RE) or transition-metal ions. Of special concern for laser action are the non-radiative transitions that lead to undesirable energy dissipation. In glass, the non-radiative transitions of RE ions are accomplished by a series of different mechanisms – multiphonon relaxation, cross-relaxation and co-operative up-conversion. Multiphonon relaxation occurs by a simultaneous creation of several phonons, which suffice to equal the energy of the transition between the excited level and the next lower level; when this is larger than the highest vibrational energy of the solid matrix, several phonons may have to be created in order to bridge the energy gap. Since the probability for multiphonon decay decreases exponentially with the number of required phonons 〚25〛, it is desirable to surround the active ion by a matrix that possesses low vibrational energies. In glasses, the highest energy vibrations are stretchings of the anions against the glass forming cations, whose frequency varies with the glass composition. The highest vibrational energies in various types of glasses are listed in Table 1 〚26〛.

Table 1

Highest vibrational energies, (cm–1), in inorganic glasses 〚26〛.

Glasses (cm–1)
Silicate1000–1100
Germanate800–975
Tellurite600–850
Fluoride500–600
Chalcogenide200–300
LaBr3175

The presence of residual OH species in the glass host increases the non-radiative decay rates, because of coupling between the RE states and the high energy stretching vibrations of the OH groups (∼3200 cm–1). This contribution to non-radiative decay is very important in the case of the Er3+ ion, since two OH phonons are sufficient to bridge the energy gap between the 4I13/2 and 4I15/2 levels. Therefore, the residual OH content of the glass must be controlled to be as low as possible 〚24〛.

The other two dissipative processes – cross-relaxation and co-operative up-conversion  – both involve RE ion–ion interactions, wherein the intensity of fluorescence decreases as the concentration of the active ions increases. Cross-relaxation may take place between any two closed spaced RE ions that happen to have two pairs of energy levels separated by the same amount. One of the ions, in an excited state, gives half of its energy to a ground state ion, so that both ions end up in the intermediate level. From this level, they both relax quickly to the ground state, via multiphonon relaxation. The cross-relaxation process is believed to be the dominant factor in the concentration quenching of Nd3+ in glass matrices 〚24〛. The spontaneous co-operative up-conversion process may occur when two neighbouring ions are in an excited state: one of them, A, gives its energy to the other, B, thus promoting B to a higher level, while A relaxes to the ground state. From this higher energy level, the B ion relaxes rapidly, radiatively or non-radiatively. This co-operative up-conversion process is believed to be the major cause of concentration quenching in Er3+-doped glasses. Er3+ has no intermediate states between the 4I13/2 metastable level and the ground state, thus cross-relaxation between an excited ion and one in the ground state cannot occur 〚24〛.

RE ions of the lanthanide series have been the most extensively used active ions for laser operation, because there are a large number of fluorescing states and wavelengths to choose among the 4f electron configurations, as illustrated in Fig. 1, for some of the more commonly used RE ions. Nevertheless, one of the obstacles to the use of RE ions can be a short lifetime of the excited states and non-radiative decay paths, which depend on the local environment of the ion and on the matrix vibrational energies. Thus, the efficiency of the radiative decay in oxide glasses is generally low, compared with halide and sulphide glasses (cf. Table 1). Of the many RE ions, Er3+ is well known for its favourable characteristics for laser transition. Er3+ ions operate as a three-level system, through the 4I13/24I15/2 transition 〚27–30〛. They can be pumped directly into the metastable upper lasing level 4I13/2 (1.49 μm), or into higher levels, from which non-radiative decay occurs to the metastable 4I13/2 level. The lower lasing level, in this case, is the ground state (4I15/2). Absorption of lasing photons from the ground state directly to the upper lasing level may take place, causing competition with the emission of lasing photons, a phenomenon known as self-absorption, typical of three-level systems 〚24〛.

Fig. 1

Simplified electronic energy level diagrams of three different RE ions and relevant transitions for pumping and emission. (Adapted from ref. 〚24〛.)

2.1.2 Frequency up-conversion

At present, there is great interest in luminescent materials for efficient frequency conversion from infrared to visible radiation, mainly because a visible source pumped by a near infrared laser is useful for high-capacity data storage optical devices. This stimulated excitation process is designated by up-conversion and is a particular type of laser action. Therefore, both the fluorescence lifetime and the stimulated emission cross-section of the RE excited level should be maximised, whereas the non-radiative decay mechanisms should be minimised. The glassy host is required to possess a minimal absorption coefficient within the wavelength region of interest, plus the capability of incorporating large RE concentrations, low vibrational energies and a high refractive index. Er3+ is the most commonly used RE dopant that can provide up-converted visible fluorescence, both in fluoride crystals and glasses. In conventional oxide glasses, there is no report of the up-conversion phenomenon, because of large non-radiative losses, due to high-energy vibrations, e.g. Si–O (∼1100 cm–1) and B–O (∼1400 cm–1), which couple to the Er3+ ions. Up-conversion pumped fluorescence expectation has therefore been placed on non-traditional oxide glass systems, with lower vibrational energies. In the stimulated up-conversion processes, excited state absorption (ESA) and energy transfer (ET) involving RE ions in the solid matrix are important mechanisms. Much work has been devoted to up-conversion lasers involving Er3+ ions, to produce green and red up-conversion output, respectively. The sensitisation of Er3+ with Yb3+ may also be favourable for infrared up-conversion 〚31–33〛.

2.1.3 Amplification at 1.3 and 1.5 μm

A driving force for research in RE doped fibres and integrated optics waveguides has been their use for amplifying weak signals in optical communications systems at 1.3 and 1.5 μm. This may be achieved by simply splicing a section of RE-doped fibre into the transmission one and injecting pump light through a fibre coupler. The signal generated within the RE emission band stimulates emission of radiation at the same frequency, amplifying the optical communication signal with high gain, high efficiency and low noise, which is highly advantageous for optical communications 〚24〛.

There are five main RE candidates for use as dopants in fibre or waveguide amplifiers for optical communications systems: Er3+, Tm3+, Nd3+, Pr3+ and Dy3+. Er3+ and Tm3+ are the choice for the 1.4–1.6-μm window centred at 1.5 μm, based on the 4I13/24I15/2 transition of Er3+ and the 3H43F4 transition of Tm3+. The 4F3/24I13/2 emission of Nd3+, the 1G43H5 transition of Pr3+ and the 6F11/2 (6H9/2)–6H15/2 transition of Dy3+ are all potentially useful for the 1.3-μm telecommunication window.

As with the laser mechanism, the major problems concerning amplification efficiency are related to dissipative processes. In addition to all the non-radiative relaxation processes already mentioned – multiphonon relaxation, cross-relaxation and co-operative up-conversion – other dissipative processes may decrease the amplification efficiency. The phenomena of excited-state absorption (ESA) and amplified spontaneous emission (ASE) are two of the most compromising processes, which can be partially eliminated by changing the glass composition.

2.2 Glass ceramics for photonics

2.2.1 Silicate oxyfluoride glass ceramics

Glass can play many varied roles in RE laser systems, namely as the laser host medium. Fluoride glasses and crystals are highly transparent materials, from the near-UV to the middle IR, with excellent RE ion solubility and low vibrational energies, making them excellent candidates as laser host materials 〚34〛, when compared to oxide glasses such as the silicates, which have limited transparency (from ∼300–3000 nm) and RE solubility. The combination of high optical transparency, large stimulated emission cross-section and low non-radiative relaxation rates enhances the probabilities of observing fluorescent emissions that are normally quenched in oxide glasses. Nevertheless, fluoride glasses have less favourable chemical, thermal and mechanical properties, compared to oxide glasses and, as a result, are difficult to prepare and to handle 〚34〛. In fact, most oxide glasses are much more attractive from the point of view of chemical and mechanical stabilities and are easier to melt and to fabricated as rods, optical fibres, or planar waveguides than fluoride glasses.

Early in 1975, Auzel et al. 〚35〛 reported a class of partially crystalline infrared up-conversion materials which were prepared from classical glass forming oxides such as SiO2, GeO2 and P2O5, mixed with PbF2 and a RE oxide, which showed a luminescence efficiency nearly twice as high as the LaF3:Yb:Er phosphor. Since these materials were formed by a glass matrix and a crystal phase as large as 10 μm, they were not transparent.

More recently, in 1993, Wang and Ohwaki 〚36〛 reported for the first time a transparent and optically isotropic oxyfluoride glass-ceramic, based on a cubic fluoride crystal phase, containing Er3+ and Yb3+ ions, dispersed throughout a continuous aluminosilicate base glass. This TGC was shown to combine the optical advantages of RE-doped fluoride crystals with the ease of forming and handling of conventional oxide glasses. From the X-ray diffraction peak widths and the Scherrer formula, 20-nm nanocrystals, tentatively identified as cadmium lead fluoride, PbxCd1–xF2, were found to precipitate from the precursor aluminosilicate glasses through a suitable heat treatment. The resonant energy transfer between ytterbium and erbium was used to produce up-conversion and fluorescence in the red–green region. With an excitation wavelength of 0.97 μm, the measured up-conversion emission intensity from the glass-ceramic was 100 times that of the precursor oxyfluoride glass and 2–10 times that of a fluoroaluminosilicate glass 〚36〛, indicating excellent up-conversion efficiency and strongly suggesting the segregation of Yb3+ and Er3+ ions within PbxCd1–xF2 nanocrystals. The authors attributed this enhanced up-converted (anti-Stokes) fluorescence to a more efficient energy transfer from Yb3+ to the 4F9/2 and 4S3/2 states of Er3+. These oxyfluoride glass ceramics have potential application in blue–green laser devices and also as hosts for Pr3+, in amplifiers for the 1.3-μm telecommunication window. However, the crystals have a cubic lattice structure and this limits the concentration of some of the trivalent RE elements, which can be incorporated into the crystal phase. Another problem with these materials is that they require cadmium in the formulation; so this type of glass might not be desirable for a large-scale manufacturing operation.

Tick et al. 〚37〛 fabricated ytterbium-free oxyfluoride glass ceramics containing yttrium and zinc fluorides and praseodymium-doped nanocrystals of cadmium lead fluorides. The crystallite sizes were estimated from the X-ray line width of the strongest two peaks and the volume fraction of crystalline phase was estimated by integrating the area of the peaks and comparing it to the total area of the glassy halo, indicating that these glass ceramics contained 15–30% by volume of crystals, with sizes between 9–18 nm. Since these nanocrystals were believed to correspond to a Cd–Pb-rich fluoride composition, with a refractive index as large as 1.8, and the residual host glass had to be an aluminosilicate, with a refractive index as low as 1.5, the scattering Hopper model 〚21〛 indicated that the essential condition for high transparency was a structure comprised of uniformly dispersed nanoparticles, with interparticle spacing of dimensions comparable to the particle size. As long as both the particle size and interparticle spacing remained of the order of a few tens of nanometers or less, refractive index matching was not essential in achieving high transparency, within this quasi-continuous solid approach.

Kukkonen et al. 〚38〛, based on high resolution transmission electron microscopy, have discussed the crystallisation mechanism of the above oxyfluoride glasses upon heat treatment and have proposed that the oxyfluoride phase separates to a mainly PbF2 crystalline phase, hosting the Er3+ dopant and not to a more complex solid solution of CdF2 with PbF2, i.e., PbxCd1–xF2. The broadest and flattest emission spectrum of Er3+ for the 4I13/2 → 4I5/2 transition was recently reported for a cerammed SiO2–Al2O3–CdF2–PbF2–ZnF2 glass precursor composition, where 2–12-nm β-PbF2 crystals, hosting Er3+ dopant ions, had developed 〚39〛, whose photoluminescence spectra are shown in Fig. 2. This glass ceramic may be important for the reduction of self-absorption and the respective noise in EDFA’s. These authors reported also a new glass-ceramic type, denominated quasi-crystal, with a typical size of nanocrystals (or embryos) of 2–3 nm. The emission intensity of Er3+-doped quasi-glass ceramic was flat across the 1530–1560 nm range, which falls in the most often employed C-band of Dense Wavelength Division Multiplexing (DWDM) systems 〚39〛.

Fig. 2

Normalised photoluminescence spectra of Er3+ (4I13/24I15/2 transition) in the precursor oxyfluoride glass (thick solid line) and in a developed glass ceramic heat treated at 440 °C for 5 h (dashed line). (Adapted from ref. 〚38〛.)

Méndez-Ramos et al. 〚40〛 reported the optical properties of Eu3+ ions in oxyfluoride glass ceramics with the precursor glass composition 30 SiO2–15 Al2O3–29 CdF2–22 PbF2–1.5 YF3 (in mol%). The ceramming process in these oxyfluoride glasses produced a glass ceramic where EuF3 crystals were initially produced and then acted as a nucleating agent for PbxCd1–xF2 crystal formation. A lifetime of 5.4 ms, obtained for the 5D0 level of the Eu3+ ions in EuF3 crystals, was close to the value of 4.5 ms, measured in the glass ceramic.

Fibres can be drawn from these TGC materials, for amplifiers operating at 1.3 μm. A Pr3+ fluorescence band wider than in fluorozirconate glasses has been found 〚41〛. Tick et al. 〚42〛 measured the passive scattering losses in near single mode fibres, with TGC composition cores 〚37〛. Using difference spectra, those authors showed that the incremental intrinsic losses in these glass-ceramic structures were in the neighbourhood of 100 dB km–1 〚42〛.

It is not necessary to have all the RE ions inside the crystalline phase. For certain applications, such as gain-flattened amplifiers for DWDM systems, for example, a combination of Er3+ ions in the glass matrix and in the crystalline phase may be optimal. The quantum efficiencies, obtained from the ratio of the measured lifetime to the radiative lifetime calculated using the Judd–Ofelt theory 〚43, 44〛, have been given by Quimby et al. 〚45〛 and later by Méndez-Ramos et al. 〚46〛, for the two glass ceramics reported by Tick et al. 〚37〛, with values between 8–9%, as shown in Table 2.

Table 2

Composition and properties of some glasses and corresponding transparent oxyfluoride glass ceramics (adapted from refs 〚20, 37〛).

Y. Wang and J. Ohwaki 〚36〛P.A. Tick et al. 〚37〛M.J. Dejneka 〚48〛Y. Kawamoto et al. 〚51〛
Base glass composition (mol%)30 SiO2–15 AlO1.5–24 PbF2–20 CdF2–10 YbF3–1 ErF330 SiO2–15 AlO1.5–17 PbF2–29 CdF2–4 YF3–5 ZnF248.5 SiO2–25.1 AlO1.5–13.1 LaF3–2.5 AlF3–10.7 Na2O–0.1 ErF350 SiO2–50 PbF2x ErF3 (x = 4 and 5)
Glass hostSiO2–Al2O3SiO2–Al2O3SiO2–Al2O3–Na2OSiO2
Crystal phasePbxCd1–xF2(Cd, Pb, Zn, Y) F2.3LaF3–0.1 ErF3β-PbF2:Er3+
Cubic lattice parameter (nm)0.5720.5750.582
Crystal dimension (nm)209–181513
Volume fraction (vol%)20–30
Refractive index1.751.55
CTE (× 10–7 ºC–1)110
Tg (ºC)400395570

Another family of oxyfluoride TGC, based on 15-nm crystals of LaF3 in a sodium aluminosilicate glass, has been proposed by Dejneka 〚47, 48〛. LaF3 is an ideal low-phonon host for RE cations 〚49〛, due to its ability to form extensive solid solutions with all the RE ions 〚50〛. Emission spectroscopy showed a partition of the Eu3+ ions between the low-phonon-energy LaF3 crystal and the glass host material. In fact, Eu3+-doped glasses emit only red luminescence from the 5D0 level, but, after a suitable heat treatment, they emit blue and green luminescence as well, indicative of a low phonon energy RE environment. Er3+ fluorescence and lifetime measurements in this material showed a large width and flatness for the 1530 nm emission, suggesting a good amplifier performance.

Kawamoto et al. 〚51〛 found that oxyfluoride glasses can be obtained in the SiO2–PbF2–ErF3 system and heat treatment of these glasses yielded TGC in which β-PbF2: Er3+ crystallites were dispersed in the glass matrix. The Scherrer equation yielded an average crystallite diameter near 13 nm. The diffraction peaks of the crystalline precipitate could be indexed in terms of the fluorite structure (space group: Fm3m), with a lattice constant a = 0.582 nm. The lattice constant of the β-PbF2 crystal, with the fluorite structure, is a = 0.594 nm 〚52〛. The slightly smaller lattice constant of the present crystalline precipitate indicated that it was a solid solution of the type β-PbF2:Er3+, in which the Pb2+ ions, with an ionic radius of 0.129 nm, were partially substituted by Er3+ ions, with an ionic radius of 0.100 nm. These glass ceramics had highly efficient up-conversion luminescence, under 800 nm laser excitation.

The composition and properties of the oxyfluoride glass ceramics are summarised in Table 2. Clearly, three main types of optically transparent, silica-based glass ceramics have been achieved: (i) those prepared by Wang and Ohwaki 〚36〛 and Tick et al. 〚37〛, based upon the formation of a (Pb, Cd)F2 cubic phase, incorporating Er3+/Yb3+ or Pr3+, in an aluminosilicate base glass; (ii) a second type, formed by LaF3 crystals in a sodium aluminosilicate base glass, reported by Dejneka 〚47〛; finally, (iii) a third type, where β-PbF2:Er3+ crystallites are dispersed in a silica glass matrix, as reported by Kawamoto et al. 〚51〛.

All the above transparent silica-based glass ceramics are not only very stable, but also all melting and processing can be done in platinum crucibles in air, at temperatures between 1000 and 1200 °C. Afterwards, the precursor glass is thermally treated at a temperature that is usually that of a crystallisation peak that lies just above Tg. The optimum ceramming temperature normally lies between the onset and the peak maximum of the crystallisation exotherm.

It has been found that the presence of the RE elements is needed in order to obtain a low temperature crystallisation peak in these silicate-based systems, as illustrated in Fig. 3. The corresponding XRD patterns for the composition with 5% Er are shown in Fig. 4. Braglia et al. 〚41〛 pointed out that primary crystallisation is of paramount relevance in these oxyfluoride systems, since the photoluminescence intensity increased as the transformation to the nanocrystalline phase progressed. This finding was an indication that the surroundings of the RE ions were changed by the formation of crystallites, because of the ion migration either into these crystals, or toward the nanocrystal/glass boundaries.

Fig. 3

DTA curves of the glass compositions 50 SiO2–50 PbF2x ErF3, (a) x = 3 and (b) x = 5 (in mol%). (Adapted from ref. 〚51〛.)

Fig. 4

XRD patterns of 50 SiO2–50 PbF2–5 ErF3 (mol%) glass, heat treated at the first crystallisation temperature, Tx, for (a) 0 h, (b) 0.5 h and (c) 6 h. (Adapted from ref. 〚51〛.)

The high-temperature properties of all these oxyfluoride glass ceramics, in which the optically active RE ions partition into a fluoride crystal phase, are more like those of an oxide than a fluoride glass. Oxyfluoride glass ceramics offer an economic alternative, with substantial performance improvements, over purely fluoride glasses. They combine the attributes of the fluoride crystal phase with those of a conventional silica-based glass matrix. A patent has already been registered with some of these glass compositions 〚53〛.

2.2.2 Germanate-oxyfluoride glass ceramics

Lead germanate oxyfluoride TGC were obtained in 1995 by Hirao et al. 〚54〛, in the GeO2–PbO–PbF2–TmF3 system, containing ∼16 nm β-PbF2:Tm3+ crystals. Bueno et al. 〚55〛 and Mortier and Auzel 〚56〛 studied the GeO2–PbO–PbF2–CdF2 and GeO2–PbO–PbF2 Er3+-doped systems, respectively. Both groups obtained cubic β-PbF2:Er3+nanocrystallites ∼5–10 nm and ∼8–20 nm in size, respectively, in TGC materials. Mortier et al. 〚56〛 measured the lifetime of the 4I11/2 → 4I13/2 transition of Er3+ around 2.7 μm, in germanate glasses of composition 50 GeO2–40 PbO–10 PbF2 (mol%) doped with 1–4 mol% ErF3, before and after heat treatment, and found an increase from 360 μs to 3 ms with the nanocrystallisation, for 3 mol% Er3+, which was still less than the 7 ms of crystalline PbF2 doped with 1 mol% ErF3 〚56, 57〛, suggesting that only some of the Er3+ ions were incorporated into β-PbF2 crystals.

Germanate oxyfluoride TGC were also obtained for higher concentrations of PbF2 and infrared up-conversion to the visible and near UV regions was observed in Yb-doped PbF2–GeO2–Al2O3–Tm2O3 glasses and glass ceramics 〚58〛, as shown in Fig. 5. Improved fluorescence was also obtained for Tm3+ precipitated in PbF2 nanocrystals, upon cerammisation of germano-silicate oxyfluoride glass 〚59〛. When compared with the glasses, the lifetime of the TGC compositions increased from ∼400 to ∼500 μs at 1.4 μm and remained unchanged at ∼5.0 ms at 1.8 μm.

Fig. 5

Up-conversion emission spectra of Tm3+/Yb3+-co-doped PbF2–GeO2–Al2O3 glass ceramics, containing 3 mol% Al2O3, as a function of the PbF2/GeO2 ratio. (Adapted from ref. 〚58〛.)

2.2.3 Tellurite oxyhalide glass ceramics

The search for other glass precursors for TGC has been motivated by the limited RE solubility and small non-linear behaviour of silica-based compositions, as well as the low chemical durability of purely fluoride compositions. Tellurite glasses have the lowest vibrational energies (∼ 700 cm–1) among oxide glasses (cf. Table 1), large refractive indices (n ∼ 2), large RE solubility and low melting points 〚60〛, thus suggesting their high potential as new optical functional materials, for optical amplifiers, frequency up-converters and lasers.

Although RE doped TeO2-based glasses have been extensively studied by several authors 〚61〛, there is very little information on TeO2-based TGC. Developed by Shioya et al. 〚62〛, the first TeO2-based TGC consisted of an unknown cubic crystalline phase with an average diameter of ∼20–40 nm, crystallised from a 70 TeO2–15 Nb2O5–15 K2O glass composition (mol%). This glass ceramic presented better optical and dielectric properties than those of the parent glass and second-harmonic generation (SHG) was achieved 〚62, 63〛. Oishi et al. 〚64〛 doped this composition (modified with MgO), with 1.2 mol% Er3+ and Eu3+ and optically TGC could be obtained, presenting higher up-conversion fluorescence intensity around 550 nm than the corresponding TeO2-based glass precursors. It was also shown 〚65〛 that cerammisation of these glasses raised their Vickers hardness values, improving their mechanical properties. Hirano et al. 〚66〛 introduced several RE ions in the same system and obtained up-conversion fluorescence intensities about 20 times higher than in the corresponding 70 TeO2–15 Nb2O5–15 K2O glass composition, with 1 mol% Er2O3.

Recently, tellurium oxyfluoride TGC have also been obtained 〚67〛 with the composition 80 TeO2–10 PbF2–10 CdF2 (mol%), whose crystalline phase was identified to be PbTe3O7, by XRD and EXAFS, but no information was given concerning their luminescence properties. Erbium-doped tellurium oxyhalide TGC have also recently been obtained in the TeO2–ZnO–ZnCl2 system, for the 60 TeO2–20 ZnO–20 ZnCl2 and 40 TeO2–20 ZnO–40 ZnCl2 (mol%) compositions doped with 1–10 mol% ErCl3 〚68〛. The precursor tellurite glasses, modified by zinc or lead oxide plus the corresponding halides, have been investigated 〚69〛 and the corresponding glass-forming regions were determined. Compositions in the TeO2–ZnO–ZnX2 and TeO2–PbO–PbX2 glass systems, in particular with X = Cl, yielded stable glasses of good optical quality. TeO2–ZnO–ZnCl2 glasses with 20 mol% ZnO were selected as hosts for ErCl3, up to 10 mol%. The 1.5-μm photoluminescence spectra and metastable level lifetimes of Er3+ in these glasses, especially with ∼ 3–5 mol% ErCl3, suggest that they may be suitable for optical amplifier applications 〚69〛. A measured lifetime of ∼ 7 ms, was obtained for the 4I13/2 → 4I15/2 transition of Er3+, in these tellurite glass ceramic 〚68〛.

2.2.4 Other glass ceramic compositions

Purely fluoride TGC have been prepared by Jewell et al. 〚70〛 in a ZrF4-doped CLAP (CdF2–LiF–AlF3–PbF2) glass. According to the authors, more than 80% transmission in the visible was achieved, even for 95% crystallisation. Mortier et al. 〚71〛 also prepared TGC in a fluoride system (ZrF4–LaF3–ErF3–GaF3–AlF3), by liquid–liquid phase separation, resulting in spinodal decomposition. Good transparency was obtained for a high crystallisation level (90%), due to a good refractive index matching between the glass and crystal phases.

Fluorescence was observed in europium-doped fluorobromozirconate TGC 〚72〛, where Eu2+ ions were believed to precipitate in BaBr2 crystals.

Recently, lithium–borate-oxide-based TGC have been synthesised in the Li2B4O7–Bi2WO6 〚73〛 and Li2B4O7–SrO–Bi2O3–Nb2O5 systems 〚74〛, comprising spherical ferroelectric nanocrystalline phases: Bi2WO6, with ∼2–33 nm and SrBi2Nb2O9, with ∼20 nm, respectively, embedded in a Li2B4O7 glass matrix. These glass ceramics have increased dielectric constants and low dielectric losses, when compared with the parent glasses, as well as high second-harmonic generation efficiencies.

TGC can also be efficient hosts for transition metal ions, as demonstrated by Beall 〚75〛 for Cr4+-doped forsterite (Mg2SiO4) and Pinckney et al. 〚76〛, with Ni2+-doped gallate spinel. Beall isolated a forsterite-rich glass composition via nanoscale phase separation in the SiO2–Al2O3–MgO–K2O system. When doped with chromium oxide, both Cr4+ luminescence and absorption became similar to those of single crystals. However, transparency was only achieved with the addition of TiO2 as a nucleating agent.

3 Conclusions

TGC have a number of useful properties, especially for photonics applications. Here, the precipitation of a fluoride or other halide crystalline phase with low maximum vibrational energy, containing a RE ion such as Er3+, within an oxide or oxyhalide glass matrix of high stability, achieves improved luminescence properties for the RE ion, without sacrificing good glass-forming ability, glass stability and ease of glass fabrication. Therefore, TGC is a very promising new type of photonic material.


Bibliographie

[〚1〛] S.D. Stookey Ind. Eng. Chem., 45 (1953), p. 115

[〚2〛] S.D. Stookey Photosensitively Opacifiable Glass, US Patent No. 2 684 911, 1954

[〚3〛] S.D. Stookey Ind. Eng. Chem., 51 (1959), p. 805

[〚4〛] S.D. Stookey Ceramic Body and Method of Making It, US Patent No. 2 971 853, 1961

[〚5〛] W. Höland; G. Beall Glass Ceramic Technology, The American Ceramic Society, 2002

[〚6〛] M. Réaumur Mém. Acad. R. Sci. Paris (1739), p. 370

[〚7〛] Pyroflam®, Registered Newell SA Trademark

[〚8〛] Visions®, Registered Corning Glass Works Trademark

[〚9〛] Z. Strnad Glass Ceramic Materials, Elsevier, Amsterdam, The Netherlands, 1986

[〚10〛] (a) Fotoform®, Fotoceram®, Registered Corning Glass Works Trademarks; (b) G.H. Beall, Annu. Rev. Mater. Sci. 22 (1992) 91

[〚11〛] Foturan®, Registered Schott Glaswerke and mtg Mikroglas Technik AG, Mainz, Germany Trademark

[〚12〛] Bioglass®, Registered US Trademark, University of Florida, Gainesville, FL, USA, 32611

[〚13〛] R. Li; A.E. Clark; L.L. Hench J. Appl. Biomater., 2 (1991), p. 231

[〚14〛] H. Brömer; E. Pfeil; H.H. Käs German Patent No. 2 326 100, 1973

[〚15〛] T. Kokubo Glastech. Ber., 67C (1994), p. 105

[〚16〛] D.G. Grossmann Am. Machinist (May 1978), p. 139

[〚17〛] K.A. Malament; D.G. Grossman J. Prosthetic Dent., 57 (1987), p. 674

[〚18〛] W. Vogel; W. Höland Angew. Chem. Int. Ed. Engl., 26 (1987), p. 527

[〚19〛] Schott Glaswerke Mainz, Brochure No. 10041, 1991

[〚20〛] G.H. Beall; L.R. Pinckney J. Am. Ceram. Soc., 82 (1999), p. 5

[〚21〛] R.W. Hopper J. Non-Cryst. Solids, 70 (1985), p. 111

[〚22〛] Neoceram®, Registered Nippon Electric Glass Trademark

[〚23〛] P.A. Tick Extended Abstracts of the International Symposium on Non-Oxide Glasses, Sheffield, UK (1998, p. 14)

[〚24〛] M. Yamane; Y. Asahara Glasses for Photonics, Cambridge University Press, Cambridge, UK, 2002

[〚25〛] T. Miyakawa; D.L. Dexter Phys. Rev. B, 1 (1970), p. 2961

[〚26〛] R. Reisfeld; C.K. Jorgensen Excited State Phenomena in Vitreous Materials (K.A. Gschneidner; L. Eyring, eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 9, North Holland, Amsterdam, 1987, p. 1

[〚27〛] M.J. Weber Non-Metallic Compound II (K.A. Gschneidner; L.R. Eyring, eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 4, Chap. 35, North-Holland Physics Publishing, Amsterdam, 1979, p. 275

[〚28〛] D.W. Hall; M.J. Weber CRC Handbook of Laser Science and Technology, Supplement 1: Lasers (M.J. Weber, ed.), CRC Press, Boca Raton, 1991, p. 137

[〚29〛] M.J. Weber J. Non-Crystalline Solids, 123 (1990), p. 208

[〚30〛] CRC Handbook of Laser Science and Technology, Supplement 1, Lasers (J.A. Caird; S.A. Payne; M.J. Weber, eds.), CRC Press. Boca Raton, 1991, p. 3

[〚31〛] F. Auzel J. Lumin., 45 (1990), p. 341

[〚32〛] Y. Mita; K. Hirama; N. Ando; H. Yamamoto; S. Shionoya J. Appl. Phys., 74 (1993), p. 4703

[〚33〛] Y. Mita J. Appl. Phys., 43 (1972), p. 1772

[〚34〛] R.M. Almeida Fluoride Glasses (K.A. Gschneidner; L. Eyring, eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 15, Elsevier Science Publishers, 1991, p. 287

[〚35〛] F. Auzel; D. Pecile; D. Morin J. Electrochem. Soc., 122 (1975), p. 101

[〚36〛] Y. Wang; J. Ohwaki Appl. Phys. Lett., 63 (1993), p. 3268

[〚37〛] P.A. Tick; N.F. Borrelli; L.K. Cornelius; M.A. Newhouse J. Appl. Phys., 78 (1995), p. 93

[〚38〛] L.L. Kukkonen; I.M. Reaney; D. Furniss; M.G. Pellat; A.B. Seddon J. Non-Cryst. Solids, 290 (2001), p. 25

[〚39〛] V.K. Tikhomirov; D. Furniss; A.B. Seddon; M. Ferrari; R. Rolli J. Mater. Sci. Lett., 21 (2002), p. 293

[〚40〛] J. Mendéz-Ramos; V. Lavín; I.R. Martín; U.R. Rodríguez-Mendoza; V.D. Rodríguez; D. Lozano-Gorrín; P. Núñez J. Appl. Phys., 89 (2001), p. 5307

[〚41〛] M. Braglia; C. Bruschi; G. Dai; J. Kraus; S. Mosso; M. Baricco; L. Battezzati; F. Rossi J. Non-Cryst. Solids, 256–257 (1999), p. 170

[〚42〛] P.A. Tick; N.F. Borrelli; I.M. Reaney Opt. Mater., 15 (2000), p. 81

[〚43〛] B.R. Judd Phys. Rev., 127 (1962), p. 750

[〚44〛] G.S. Ofelt J. Chem. Phys., 37 (1962), p. 511

[〚45〛] R.S. Quimby; P.A. Tick; N.F. Borrelli; L.K. Cornelius J. Appl. Phys., 83 (1998), p. 1649

[〚46〛] J. Méndez-Ramos; V. Lavín; I.R. Martín; U.R. Rodríguez-Mendoza; J. González-Almeida; V.D. Rodríguez; D. Lozano-Gorrín; P. Núnez J. Alloys Compds, 323–324 (2001), p. 753

[〚47〛] M.J. Dejneka Proc. SPIE, 3280 (1998), p. 132

[〚48〛] M.J. Dejneka J. Non-Cryst. Solids, 239 (1998), p. 149

[〚49〛] M.J. Weber J. Chem. Phys., 48 (1968), p. 4774

[〚50〛] O.V. Kudryavteseva; L.S. Garashina; K.K. Rivkina; B.P. Sobolev Sov. Phys. Crystallogr., 18 (1974), p. 531

[〚51〛] Y. Kawamoto; R. Kanno; J. Qiu J. Mater. Sci., 33 (1998), p. 63

[〚52〛] JCPDS International Centre for Diffraction Data Card No. 6-0251

[〚53〛] P. Tick United States Patent, No. US 6 281 151 B1, 28 August 2001

[〚54〛] K. Hirao; K. Tanaka; M. Makita; N. Soga J. Appl. Phys., 78 (1995), p. 3445

[〚55〛] L.A. Bueno; P. Melnikov; Y. Messaddeq; S.L.J. Ribeiro J. Non-Cryst. Solids, 247 (1999), p. 87

[〚56〛] M. Mortier; F. Auzel J. Non-Cryst. Solids, 256–257 (1999), p. 361

[〚57〛] M. Mortier; P. Goldner; C. Château; M. Genotelle J. Alloys Compds, 323–324 (2001), p. 245

[〚58〛] F.C. Guinhos; P.C. Nóbrega; P.A. Santa-Cruz J. Alloys Compds, 323–324 (2001), p. 358

[〚59〛] H. Hayashi; S. Tanabe; T. Hanada J. Appl. Phys., 89 (2001), p. 1041

[〚60〛] J.S. Wang; E.M. Vogel; E. Snitzer Opt. Mater., 3 (1994), p. 187

[〚61〛] R.A.H. El-Mallawany Tellurite Glasses Handbook – Physical Properties and Data, CRC Press, Boca Raton, 2001

[〚62〛] K. Shioya; T. Komatsu; H.G. Kim; R. Sato; K. Matusita J. Non-Cryst. Solids, 189 (1995), p. 16

[〚63〛] H.G. Kim; T. Komatsu; K. Shioya; K. Matusita; K. Tanaka; K. Hirao J. Non-Cryst. Solids, 208 (1996), p. 303

[〚64〛] H. Oishi; Y. Benino; T. Komatsu Phys. Chem. Glasses, 40 (1999), p. 212

[〚65〛] T. Watanabe; Y. Benino; K. Ishizaki; T. Komatsu J. Ceram. Soc. Jpn, 107 (1999), p. 1140

[〚66〛] K. Hirano; Y. Benino; T. Komatsu J. Phys. Chem. Solids, 62 (2001), p. 2075

[〚67〛] M.A.P. Silva; Y. Messaddeq; V. Briois; M. Poulain; F. Villain; S.J.L. Ribeiro J. Phys. Chem. Solids, 63 (2002), p. 605

[〚68〛] Luís M. Fortes, Luís F. Santos, M. Clara Gonçalves, Rui M. Almeida, unpublished work

[〚69〛] L.M. Fortes, L.F. Santos, M. Clara Gonçalves, Rui M. Almeida (submitted for publication)

[〚70〛] J.M. Jewell; E. Joseph Friebele; Ishwar D. Aggarwal J. Non-Cryst. Solids, 188 (1995), p. 285

[〚71〛] M. Mortier; A. Monteville; G. Patriarche; G. Mazé; F. Auzel Opt. Mater., 16 (2001), p. 255

[〚72〛] A. Edgar; S. Schweizer; S. Assmann; J.M. Spaeth; P.J. Newman; D.R. MacFarlane J. Non-Cryst. Solids, 284 (2001), p. 237

[〚73〛] G.S. Murugan; K.B.R. Varma J. Non-Cryst. Solids, 279 (2001), p. 1

[〚74〛] N. Syam Prasad; K.B.R. Varma Mater. Sci. Eng., B90 (2002), p. 246

[〚75〛] G.H. Beall, Proc. Int. Congr. Glass, Vol. 2, inburgh, Scotland, 2001, p. 170

[〚76〛] L.R. Pinckney; B.N. Samson; G.H. Beall; J. Wang Proc. 104th Annual Meeting & Exhibition, The American Ceramic Society, St. Louis, Missouri, USA, 2002, p. 120


Cité par

  • S. Ibrahim; A.A. El-Kheshen; M. Abdel-baki; A.M. Fayad; Y.M. Hamdy; Mohamed M. Ibrahim; M.A. Marzouk Synthesis and characterization of erbium silica glass and glass-ceramics for potential low-emissivity coating applications, Ceramics International, Volume 51 (2025) no. 1, p. 458 | DOI:10.1016/j.ceramint.2024.11.021
  • Shuo Tian; Man Zhou; Hao Yang Shen; Jun Jie Huang; Hao Zhang; Kai Ge Liu; Bin He; Ling Bing Kong Low thermal expansion coefficient LAS glass-ceramics with petalite as the main crystal phase, Journal of Non-Crystalline Solids, Volume 649 (2025), p. 123338 | DOI:10.1016/j.jnoncrysol.2024.123338
  • Yash D. Narad; Yatish R. Parauha; Sanjay J. Dhoble Synthesis and luminescence investigation of Eu3+ and Dy3+ doped NaAl(PO3)4 glass for solid state lighting applications, Journal of Non-Crystalline Solids, Volume 655 (2025), p. 123446 | DOI:10.1016/j.jnoncrysol.2025.123446
  • Jun Song; Guohua Chen UV-inspired three rare-earth-doped molybdate glass and NaGd(MoO4)2 glass-ceramic phosphors for white LEDs, Sustainable Materials and Technologies, Volume 43 (2025), p. e01229 | DOI:10.1016/j.susmat.2024.e01229
  • Laleh Farahinia; Mohammad Rezvani; Amin Ahmadi Kordlar Optical properties and luminescence behavior of Tb3+-Doped SiO2–Al2O3–BaO–BaF2 oxyfluoride glasses and glass ceramics, Ceramics International, Volume 50 (2024) no. 10, p. 17624 | DOI:10.1016/j.ceramint.2024.02.252
  • Kaustubh Deshpande; Sanjeevani Jawadand; Pratik Godbole; Tushar Meshram; J. Vijaya Kumar; Kishor Deshmukh; Tejashree Raut; Pradeep Kumar Jain; Kirtikumar Randive Eco-environmental Challenges Associated with Application of REE, Current Trends in Mineral-Based Products and Utilization of Wastes: Recent Studies from India (2024), p. 27 | DOI:10.1007/978-3-031-50262-0_2
  • A. S. Yasukevich; V. E. Kisel; E. E. Trusova; G. E. Rachkovskaya; G. B. Zakharevich; K. B. Podbolotov; V. S. Gurin Determination of the Concentration of Tm3+ and Ho3+ Ions in the Glass and Crystalline Phases in Oxyfluoride Glass Ceramics by Absorption Spectra Analysis, Devices and Methods of Measurements, Volume 15 (2024) no. 1, p. 50 | DOI:10.21122/2220-9506-2024-15-1-50-59
  • Mercedes Sedano; Giulio Gorni; Glenn Mather; Alicia Durán; Joaquin Fernandez; Maria Jesus Pascual; Rolindes B. Balda; Stefano Taccheo; Maria Rita Cicconi; Matthias L. Jäger, Fiber Lasers and Glass Photonics: Materials through Applications IV (2024), p. 52 | DOI:10.1117/12.3021998
  • M. Sedano; G. Gorni; G.C. Mather; A. Durán; J. Fernández; R. Balda; M.J. Pascual Luminescence of Nd3+-doped LaF3 glass-ceramics enhanced with Ag nanoparticles, Journal of the European Ceramic Society, Volume 44 (2024) no. 4, p. 2427 | DOI:10.1016/j.jeurceramsoc.2023.11.029
  • Viviana Cristiglio; Irina Pozdnyakova; Aleksei Bytchkov; Gabriel J. Cuello; Sandro Jahn; Didier Zanghi; Séverine Brassamin; James W. E. Drewitt; Louis Hennet Liquid Structure of Magnesium Aluminates, Materials, Volume 17 (2024) no. 24, p. 6173 | DOI:10.3390/ma17246173
  • P. Babu; U.R. Rodríguez-Mendoza; V. Lavín; R. Praveena Spectroscopic and energy upconversion properties of Ho3+-Yb3+ ions in CaF2 nanocrystalline glass-ceramics, Optical Materials, Volume 153 (2024), p. 115609 | DOI:10.1016/j.optmat.2024.115609
  • Daming Sun; Qi Zhang; Pengfei Liu; Lars R. Jensen; Deyong Wang; Morten M. Smedskjaer Balancing fracture toughness and transparency in barium titanosilicate glass-ceramics, Ceramics International, Volume 49 (2023) no. 11, p. 17479 | DOI:10.1016/j.ceramint.2023.02.115
  • Ekaterina Kulpina; Anastasiia Babkina; Ksenia Zyryanova; Damir Valiev; Sergey Stepanov; Rustam Nuryev; Alexander Ignatiev; Evgeny Zhizhin; Aleksandra Koroleva Lithium concentration effect on crystallization kinetics and spectral properties of Cr-doped Li2O–K2O–Al2O3–B2O3 glass-ceramics, Ceramics International, Volume 49 (2023) no. 12, p. 20061 | DOI:10.1016/j.ceramint.2023.03.129
  • Francesco Enrichi; Michele Cassetta; Nicola Daldosso; Elti Cattaruzza; Pietro Riello; Rustem Zairov; Alberto Vomiero; Giancarlo C. Righini Effect of the crystal structure on the optical properties and Ag sensitization of Tb3+/Yb3+ ions in silica-zirconia glasses and glass-ceramics, Ceramics International, Volume 49 (2023) no. 24, p. 41064 | DOI:10.1016/j.ceramint.2022.10.036
  • Ghizal F. Ansaria; S. P. Mahato Optical Upconversion Properties Of Tm2O3 / Yb2O3 Doped Lead Tellurite Glasses, International Journal for Global Academic Scientific Research, Volume 2 (2023) no. 1, p. 10 | DOI:10.55938/ijgasr.v2i1.38
  • Iva Milisavljevic; Michael J. Pitcher; Jianqiang Li; Sébastien Chenu; Mathieu Allix; Yiquan Wu Crystallization of glass materials into transparent optical ceramics, International Materials Reviews, Volume 68 (2023) no. 6, p. 648 | DOI:10.1080/09506608.2022.2107372
  • Katrin Thieme; Christian Patzig; Brian Topper; Christian Thieme; Stephan Gierth; Christian Rüssel; Thomas Höche Early-stage clustering in Tb-doped borosilicate glasses revealed by high-resolution scanning transmission electron microscopy and luminescence properties, Journal of Alloys and Compounds, Volume 962 (2023), p. 171091 | DOI:10.1016/j.jallcom.2023.171091
  • Dirk Müller; Luiz Pereira; Kai-Uwe Hess; Donald B. Dingwell Influence of lanthanides on the melt viscosity and glass density of sodium disilicate, Journal of Non-Crystalline Solids, Volume 619 (2023), p. 122565 | DOI:10.1016/j.jnoncrysol.2023.122565
  • Pritha Patra; K. Jayanthi; Fabian Margit; Shweta R. Keshri; Sandip Bysakh; Kaushik Biswas; Nitya Nand Gosvami; N. M. Anoop Krishnan; Amarnath R. Allu; K. Annapurna The effect of rare earth (RE3+) ionic radii on transparent lanthanide-tellurite glass-ceramics: correlation between ‘hole-formalism’ and crystallization, Materials Advances, Volume 4 (2023) no. 12, p. 2667 | DOI:10.1039/d3ma00036b
  • Joni Welman Simatupang; Firman Mangasa Simanjuntak; David James Tyler Perovskite-based light-emitting diodes, Perovskite Ceramics (2023), p. 485 | DOI:10.1016/b978-0-323-90586-2.00016-4
  • Aditya Ranjan Ray; Sujata Mishra Hydro metallurgical technique as better option for the recovery of rare earths from mine tailings and industrial wastes, Sustainable Chemistry and Pharmacy, Volume 36 (2023), p. 101311 | DOI:10.1016/j.scp.2023.101311
  • Taiki Yanagishima; John Russo; Roel P. A. Dullens; Hajime Tanaka From ultra-fast growth to avalanche growth in devitrifying glasses, The Journal of Chemical Physics, Volume 159 (2023) no. 6 | DOI:10.1063/5.0155915
  • Changzhen Wang Gemstones, Jade, and Rare Earth Optical Glasses and Ceramics, Theory and Application of Rare Earth Materials (2023), p. 313 | DOI:10.1007/978-981-19-4178-8_18
  • Sahar Zinatloo-Ajabshir Advanced rare earth-based ceramic nanomaterials at a glance, Advanced Rare Earth-Based Ceramic Nanomaterials (2022), p. 1 | DOI:10.1016/b978-0-323-89957-4.00011-6
  • Hussein Fneich; Manuel Vermillac; Daniel R. Neuville; Wilfried Blanc; Ahmad Mehdi Highlighting of LaF3 Reactivity with SiO2 and GeO2 at High Temperature, Ceramics, Volume 5 (2022) no. 2, p. 182 | DOI:10.3390/ceramics5020016
  • Junhao Xing; Fei Shang; Li Li; Guohua Chen Structure, up-conversion luminescence and optical temperature sensitive properties of glass ceramics containing Ca5(PO4)3F with double luminescence centers, Ceramics International, Volume 48 (2022) no. 1, p. 1098 | DOI:10.1016/j.ceramint.2021.09.195
  • Sara Ahmadi; Bijan Eftekhari Yekta; Hossein Sarpoolaky; Alireza Aghaei Preparation of monolithic transparent mullite-based glass-ceramics by the sol–gel method, Journal of Non-Crystalline Solids, Volume 575 (2022), p. 121186 | DOI:10.1016/j.jnoncrysol.2021.121186
  • Pengcheng Li; Xiuxia Xu; Junjie Zhao; Pragati Awasthi; Xusheng Qiao; Jincheng Du; Xianping Fan; Guodong Qian Lanthanide doped fluorosilicate glass-ceramics: A review on experimental and theoretical progresses, Journal of Rare Earths, Volume 40 (2022) no. 2, p. 169 | DOI:10.1016/j.jre.2021.09.014
  • Ye Luo; Conghang Qu; John C. Mauro High toughness transparent glass‐ceramics with petalite and β‐spodumene solid solution as two major crystal phases, Journal of the American Ceramic Society, Volume 105 (2022) no. 10, p. 6116 | DOI:10.1111/jace.18590
  • M. A. Farag; A. Ibrahim; M. Y. Hassaan; R. M. Ramadan Enhancement of structural and optical properties of transparent sodium zinc phosphate glass–ceramics nano composite, Journal of the Australian Ceramic Society, Volume 58 (2022) no. 2, p. 653 | DOI:10.1007/s41779-022-00716-3
  • Pritha Patra; Kalyandurg Annapurna Transparent tellurite glass-ceramics for photonics applications: A comprehensive review on crystalline phases and crystallization mechanisms, Progress in Materials Science, Volume 125 (2022), p. 100890 | DOI:10.1016/j.pmatsci.2021.100890
  • W.L. Fong; KhA. Bashar; S.O. Baki; M.K.A. Karim; M.I. Sayyed; M.A. Mahdi; B.T. Goh; O.B. Aljewaw Influence of Bi2O3 content on structural, optical and radiation shielding properties of transparent Bi2O3-Na2O-TiO2-ZnO-TeO2 glass ceramics, Radiation Physics and Chemistry, Volume 200 (2022), p. 110289 | DOI:10.1016/j.radphyschem.2022.110289
  • Nirajan Ojha; Iuliia Dmitrieva; Wilfried Blanc; Laeticia Petit Tailoring the Glass Composition to Increase the Thermal Stability without Impacting the Crystallization Behavior of Oxyfluorophosphate Glass, Ceramics, Volume 4 (2021) no. 2, p. 148 | DOI:10.3390/ceramics4020013
  • Francesco Enrichi; Elti Cattaruzza; Pietro Riello; Giancarlo C. Righini; Alberto Vomiero Ag-sensitized Tb3+/Yb3+ codoped silica-zirconia glasses and glass-ceramics: Systematic and detailed investigation of the broadband energy-transfer and downconversion processes, Ceramics International, Volume 47 (2021) no. 13, p. 17939 | DOI:10.1016/j.ceramint.2021.03.107
  • Mengting He; Jiannan Jia; Junjie Zhao; Xvsheng Qiao; Jincheng Du; Xianping Fan Glass-ceramic phosphors for solid state lighting: A review, Ceramics International, Volume 47 (2021) no. 3, p. 2963 | DOI:10.1016/j.ceramint.2020.09.227
  • Yuriy G. Denisenko; Maxim S. Molokeev; Aleksandr S. Oreshonkov; Alexander S. Krylov; Aleksandr S. Aleksandrovsky; Nikita O. Azarapin; Oleg V. Andreev; Illaria A. Razumkova; Victor V. Atuchin Crystal Structure, Vibrational, Spectroscopic and Thermochemical Properties of Double Sulfate Crystalline Hydrate [CsEu(H2O)3(SO4)2]·H2O and Its Thermal Dehydration Product CsEu(SO4)2, Crystals, Volume 11 (2021) no. 9, p. 1027 | DOI:10.3390/cryst11091027
  • Hei Chit Leo Tsui; Noel Healy Recent progress of semiconductor optoelectronic fibers, Frontiers of Optoelectronics, Volume 14 (2021) no. 4, p. 383 | DOI:10.1007/s12200-021-1226-0
  • Fangfang Hu; Yuncheng Jiang; Yihang Chen; Rongfei Wei; Hai Guo; Changkui Duan Optical thermometry based on the thermal coupling of low-lying levels of Sm3+ in highly stable NaGdF4 glass ceramics, Journal of Alloys and Compounds, Volume 867 (2021), p. 159160 | DOI:10.1016/j.jallcom.2021.159160
  • Diego Pugliese; Alexander Veber; Arnaud Lemière; Nadia G. Boetti; Laeticia Petit Effect of post-heat-treatment on the structural, spectroscopic and dissolution properties of a highly stable Er3+-doped multi-component phosphate glass, Journal of Alloys and Compounds, Volume 883 (2021), p. 160878 | DOI:10.1016/j.jallcom.2021.160878
  • A. M. Abdelghany; Y. S. Rammah Transparent Alumino Lithium Borate Glass-Ceramics: Synthesis, Structure and Gamma-Ray Shielding Attitude, Journal of Inorganic and Organometallic Polymers and Materials, Volume 31 (2021) no. 6, p. 2560 | DOI:10.1007/s10904-020-01862-6
  • Meisam Riahi; Parvin Alizadeh; Mohammad Soltani The impact of erbium ion on the crystallization process of yttrium fluorosilicate glass ceramics, Journal of Non-Crystalline Solids, Volume 553 (2021), p. 120499 | DOI:10.1016/j.jnoncrysol.2020.120499
  • A.A. Lipovskii; V.G. Melehin; A.V. Redkov; I.V. Reshetov; D.K. Tagantsev Crystallization of K2O-TiO2-SiO2 glass below glass transition by poling, Journal of Non-Crystalline Solids, Volume 571 (2021), p. 121081 | DOI:10.1016/j.jnoncrysol.2021.121081
  • Karolina Milewska; Michał Maciejewski; Anna Synak; Marcin Łapiński; Aleksandra Mielewczyk-Gryń; Wojciech Sadowski; Barbara Kościelska From Structure to Luminescent Properties of B2O3-Bi2O3-SrF2 Glass and Glass-Ceramics Doped with Eu3+ Ions, Materials, Volume 14 (2021) no. 16, p. 4490 | DOI:10.3390/ma14164490
  • Songxuan Liu; Zhiwei Luo; Ping Zhang; Weicheng Lei; Ziyou Zhou; Haozhang Liang; Anxian Lu Effect of Tb3+ ion concentration on the up-conversion and down-conversion luminescence properties of the Yb3+/Ho3+/Tb3+ tri-doped SiO2–Al2O3–Y2O3–NaF–CaF2 glasses, Optical Materials, Volume 121 (2021), p. 111567 | DOI:10.1016/j.optmat.2021.111567
  • R. Balda; S. Babu; A. A. Cabral; M. Sedano; D. Galusek; A. Duran; M. J. Pascual; J. Fernandez, 2020 22nd International Conference on Transparent Optical Networks (ICTON) (2020), p. 1 | DOI:10.1109/icton51198.2020.9203157
  • Gaurav Gupta; Sandip Bysakh; Sathravada Balaji; Sultan Khan; Kaushik Biswas; Amarnath R. Allu; Kalyandurg Annapurna Influence of Ho2O3 on Optimizing Nanostructured Ln2Te6O15Anti‐Glass Phases to Attain Transparent TeO2‐Based Glass‐Ceramics for Mid‐IR Photonic Applications, Advanced Engineering Materials, Volume 22 (2020) no. 5 | DOI:10.1002/adem.201901357
  • Hao Zhang; Ze Yang; Lei Zhao; Jiangyan Cao; Xue Yu; Yang (Michael) Yang; Siufung Yu; Jianbei Qiu; Xuhui Xu Long Persistent Luminescence from All‐Inorganic Perovskite Nanocrystals, Advanced Optical Materials, Volume 8 (2020) no. 18 | DOI:10.1002/adom.202000585
  • M. Hongisto; A. Veber; N.G. Boetti; S. Danto; V. Jubera; L. Petit Transparent Yb3+ doped phosphate glass-ceramics, Ceramics International, Volume 46 (2020) no. 16, p. 26317 | DOI:10.1016/j.ceramint.2020.01.121
  • Weihui Shen; Jun'an Lai; Yong Yang; Dacheng Zhou; Jianbei Qiu; Muhammad Ibrar Khan; Zhencai Li; Qi Wang; Ke Zhang Effect of TiO2 on glass structure control of self-crystallized Ba2LaF7 glass-ceramics, Ceramics International, Volume 46 (2020) no. 9, p. 14173 | DOI:10.1016/j.ceramint.2020.02.224
  • Himadri Sekhar Maiti Transparent and Machinable Glass-Ceramics, Handbook of Advanced Ceramics and Composites (2020), p. 461 | DOI:10.1007/978-3-030-16347-1_13
  • Xiuxia Xu; Junjie Zhao; Xiaotong Chen; Qian Xu; Ting Wang; Siu Fung Yu; Xuhui Xu; Xvsheng Qiao; Jincheng Du; Xianping Fan; Jianbei Qiu; Guodong Qian Ca2+/Sr2+/Ba2+ dependent phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass, Journal of the American Ceramic Society, Volume 103 (2020) no. 10, p. 5796 | DOI:10.1111/jace.17299
  • Ning Liu; Jingxian Zhang; Yusen Duan; Xingbang Li; Shaoming Dong Effect of rare earth oxides addition on the mechanical properties and coloration of silicon nitride ceramics, Journal of the European Ceramic Society, Volume 40 (2020) no. 4, p. 1132 | DOI:10.1016/j.jeurceramsoc.2019.11.058
  • Luukas Kuusela; Alexander Veber; Nadia G. Boetti; Laeticia Petit Impact of ZnO Addition on Er3+ Near-Infrared Emission, the Formation of Ag Nanoparticles, and the Crystallization of Sodium Fluorophosphate Glass, Materials, Volume 13 (2020) no. 3, p. 527 | DOI:10.3390/ma13030527
  • Yu Zhang; Hao Lei; Guannan Li; Lingwei Zeng; Jianfeng Tang Yb3+/Er3+ co-doped transparent tellurite glass-ceramic for enhanced upconversion luminescence, Optical Materials, Volume 99 (2020), p. 109552 | DOI:10.1016/j.optmat.2019.109552
  • N. Ojha; A. Szczodra; N. G. Boetti; J. Massera; L. Petit Nucleation and growth behavior of Er3+ doped oxyfluorophosphate glasses, RSC Advances, Volume 10 (2020) no. 43, p. 25703 | DOI:10.1039/d0ra04681g
  • I. Nunes de Assis; R. Peña-Garcia; M. Reza Dousti Effect of CeO2 and Eu2O3 on the calorimetric behavior of Si–Al–Zn–K–Ti oxide glass, Solid State Sciences, Volume 107 (2020), p. 106315 | DOI:10.1016/j.solidstatesciences.2020.106315
  • E.A. Lalla; A. Sanz-Arranz; M. Konstantinidis; J. Freemantle; P. Such; A.D. Lozano-Gorrín; V. Lavin; G. Lopez-Reyes; F. Rull-Pérez; U.R. Rodríguez-Mendoza Raman-IR Spectroscopic Structural Analysis of Rare-Earth (RE3+) Doped Fluorotellurite Glasses at different laser wavelengths, Vibrational Spectroscopy, Volume 106 (2020), p. 103020 | DOI:10.1016/j.vibspec.2020.103020
  • Himadri Sekhar Maiti Transparent and Machinable Glass-Ceramics, Handbook of Advanced Ceramics and Composites (2019), p. 1 | DOI:10.1007/978-3-319-73255-8_13-1
  • K. Soler-Carracedo; A. Ruiz; I.R. Martín; F. Lahoz Luminescence whispering gallery modes in Ho3+ doped microresonator glasses for temperature sensing, Journal of Alloys and Compounds, Volume 777 (2019), p. 198 | DOI:10.1016/j.jallcom.2018.10.297
  • Chang-hyuck Bae; Ki-Soo Lim Enhanced visible emission in Eu3+ doped glass containing Ag-clusters, Ag nanoparticles, and ZnO nanocrystals, Journal of Alloys and Compounds, Volume 793 (2019), p. 410 | DOI:10.1016/j.jallcom.2019.04.122
  • A. Szczodra; A. Mardoukhi; M. Hokka; N.G. Boetti; L. Petit Fluorine losses in Er3+ oxyfluoride phosphate glasses and glass-ceramics, Journal of Alloys and Compounds, Volume 797 (2019), p. 797 | DOI:10.1016/j.jallcom.2019.05.151
  • Lia Mara Marcondes; Lais Rodrigues; Cristiano Ramos da Cunha; Rogéria Rocha Gonçalves; Andrea S.S. de Camargo; Fabia Castro Cassanjes; Gael Yves Poirier Rare-earth ion doped niobium germanate glasses and glass-ceramics for optical device applications, Journal of Luminescence, Volume 213 (2019), p. 224 | DOI:10.1016/j.jlumin.2019.05.012
  • Sandeep Kaur; O.P. Pandey; C.K. Jayasankar; Neetu Chopra Spectroscopic, thermal and structural investigations of Dy3+ activated zinc borotellurite glasses and nano-glass-ceramics for white light generation, Journal of Non-Crystalline Solids, Volume 521 (2019), p. 119472 | DOI:10.1016/j.jnoncrysol.2019.119472
  • Weihui Shen; Yong Yang; Zhencai Li; Muhammad Ibrar Khan; Enhao Cao; Dacheng Zhou; Jianbei Qiu Effect of melting temperature on the structure of self-crystallized Ba2LaF7 glass-ceramics, Journal of Non-Crystalline Solids, Volume 523 (2019), p. 119579 | DOI:10.1016/j.jnoncrysol.2019.119579
  • R. Sen; N.N.G. Boetti; M. Hokka; L. Petit Optical, structural and luminescence properties of oxyfluoride phosphate glasses and glass-ceramics doped with Yb3+, Journal of Non-Crystalline Solids: X, Volume 1 (2019), p. 100003 | DOI:10.1016/j.nocx.2018.100003
  • Pooya Torab Ahmadi; Bijan Eftekhari Yekta; Hesameddin Mohammadi; Farhad Golestani‐Fard Thermal and crystallization behavior of SiO2‐PbF2 glass system in the presence of ErF3 and Al2O3, Journal of the American Ceramic Society, Volume 102 (2019) no. 6, p. 3411 | DOI:10.1111/jace.16186
  • Junjie Zhao; Xiuxia Xu; Xiaotong Chen; Qian Xu; Zhou Luo; Xvsheng Qiao; Jincheng Du; Xianping Fan; Guodong Qian A structure model for phase separated fluoroaluminosilicate glass system by molecular dynamic simulations, Journal of the European Ceramic Society, Volume 39 (2019) no. 15, p. 5018 | DOI:10.1016/j.jeurceramsoc.2019.06.042
  • Aluisio Cabral; Giulio Gorni; José Joaquín Velázquez; María Jesús Pascual; Alicia Durán; Joaquín Fernández; Rolindes Balda; Michel J. Digonnet; Shibin Jiang, Optical Components and Materials XVI (2019), p. 27 | DOI:10.1117/12.2507266
  • Carlo Molardi; Aidana Beisenova; Aizhan Issatayeva; Sanzhar Korganbayev; Daniele Tosi; Wilfried Blanc; Israel Gannot, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIX (2019), p. 28 | DOI:10.1117/12.2510100
  • Andrew Edgar Optical Properties of Glasses, Optical Properties of Materials and Their Applications (2019), p. 83 | DOI:10.1002/9781119506003.ch4
  • W.C. Wang; B. Zhou; S.H. Xu; Z.M. Yang; Q.Y. Zhang Recent advances in soft optical glass fiber and fiber lasers, Progress in Materials Science, Volume 101 (2019), p. 90 | DOI:10.1016/j.pmatsci.2018.11.003
  • Juejun Hu; Lan Yang Glass in Integrated Photonics, Springer Handbook of Glass (2019), p. 1441 | DOI:10.1007/978-3-319-93728-1_42
  • Junjie Zhao; Xiuxia Xu; Pengcheng Li; Xinyue Li; Daqin Chen; Xvsheng Qiao; Jincheng Du; Guodong Qian; Xianping Fan Structural Origins of RF3/NaRF4 Nanocrystal Precipitation from Phase-Separated SiO2–Al2O3–RF3–NaF Glasses: A Molecular Dynamics Simulation Study, The Journal of Physical Chemistry B, Volume 123 (2019) no. 13, p. 3024 | DOI:10.1021/acs.jpcb.9b01674
  • Wilfried Blanc; Isabelle Martin; Hugues Francois-Saint-Cyr; Xavier Bidault; Stéphane Chaussedent; Chrystel Hombourger; Sabrina Lacomme; Philippe Le Coustumer; Daniel R. Neuville; David J. Larson; Ty J. Prosa; Christelle Guillermier Compositional Changes at the Early Stages of Nanoparticles Growth in Glasses, The Journal of Physical Chemistry C, Volume 123 (2019) no. 47, p. 29008 | DOI:10.1021/acs.jpcc.9b08577
  • Carlo Molardi; Sanzhar Korganbayev; Wilfried Blanc; Daniele Tosi; Tiegen Liu; Shibin Jiang, Advanced Sensor Systems and Applications VIII (2018), p. 76 | DOI:10.1117/12.2502600
  • Lam Thi Ngoc Tran; Damiano Massella; Lidia Zur; Alessandro Chiasera; Stefano Varas; Cristina Armellini; Giancarlo C. Righini; Anna Lukowiak; Daniele Zonta; Maurizio Ferrari SiO2-SnO2:Er3+ Glass-Ceramic Monoliths, Applied Sciences, Volume 8 (2018) no. 8, p. 1335 | DOI:10.3390/app8081335
  • Manuel Vermillac; Jean-François Lupi; Stanislaw Trzesien; Michele Ude; Wilfried Blanc On the Enlargement of the Emission Spectra from the 4I13/2 Level of Er3+ in Silica-Based Optical Fibers through Lanthanum or Magnesium Co-Doping, Ceramics, Volume 1 (2018) no. 2, p. 364 | DOI:10.3390/ceramics1020029
  • C.S. Dwaraka Viswanath; C.K. Jayasankar Photoluminescence, γ-irradiation and X-ray induced luminescence studies of Sm3+-doped oxyfluorosilicate glasses and glass-ceramics, Ceramics International, Volume 44 (2018) no. 6, p. 6104 | DOI:10.1016/j.ceramint.2017.12.243
  • Alexey S. Lipatiev; Sergey V. Lotarev; Andrey G. Okhrimchuk; Tatiana O. Lipateva; Sergey S. Fedotov; Vladimir N. Sigaev Crystal-in-glass architecture engineering: writing, erasing and rewriting by a femtosecond laser beam, CrystEngComm, Volume 20 (2018) no. 22, p. 3011 | DOI:10.1039/c8ce00525g
  • Wilfried Blanc; Manuel Vermillac; Hussein Fneich; Jérémy Turlier; Martiane Cabié; Courtney Kucera; Daniel Borschneck; François Peters; Philippe Vennéguès; Stéphane Chaussedent; Daniel R. Neuville; Ahmad Mehdi; John M. Ballato; J.-F. Lupi; Stefano Taccheo; Maurizio Ferrari; Jacob I. Mackenzie, Fiber Lasers and Glass Photonics: Materials through Applications (2018), p. 47 | DOI:10.1117/12.2310011
  • A. Nommeots-Nomm; N.G. Boetti; T. Salminen; J. Massera; M. Hokka; L. Petit Luminescence of Er 3+ doped oxyfluoride phosphate glasses and glass-ceramics, Journal of Alloys and Compounds, Volume 751 (2018), p. 224 | DOI:10.1016/j.jallcom.2018.04.101
  • M.S.A. Mohd Saidi; S.K. Ghoshal; R. Arifin; M.K. Roslan; R. Muhammad; W.N.W. Shamsuri; M. Abdullah; M.S. Shaharin Spectroscopic properties of Dy3+ doped tellurite glass with Ag/TiO2 nanoparticles inclusion: Judd−Ofelt analysis, Journal of Alloys and Compounds, Volume 754 (2018), p. 171 | DOI:10.1016/j.jallcom.2018.04.280
  • M. Rodríguez Chialanza; R. Keuchkerian; L. J. Q. Maia; J. F. Carvalho; L. Suescun; R. Faccio; L. Fornaro Development of oxyfluoroborate glass ceramics doped with Er3+ and Yb3+, Journal of Materials Science: Materials in Electronics, Volume 29 (2018) no. 7, p. 5472 | DOI:10.1007/s10854-017-8514-x
  • Guna Krieke; Anatolijs Sarakovskis; Maris Springis Upconversion luminescence of Er3+/Yb3+ and their role in the stabilization of cubic NaLaF4 nanocrystals in transparent oxyfluoride glass ceramics, Journal of Non-Crystalline Solids, Volume 481 (2018), p. 335 | DOI:10.1016/j.jnoncrysol.2017.11.016
  • Hadi Rahimian; Yusef Hatefi; Ali Dehghan Hamedan; Seyed Pezhman Shirmardi; Hossein Mokhtari Structural and optical investigations on Eu3+ doped fluorophosphate glass and nano glass-ceramics, Journal of Non-Crystalline Solids, Volume 487 (2018), p. 46 | DOI:10.1016/j.jnoncrysol.2018.02.017
  • Rolindes Balda; Giulio Gorni; Jose Joaquin Velazquez; María Jesús Pascual; Alicia Durán; Joaquín Fernández; Michel J. Digonnet; Shibin Jiang, Optical Components and Materials XV (2018), p. 5 | DOI:10.1117/12.2290228
  • Rolindes Balda; Giulio Gorni; José J. Velázquez; María J. Pascual; Alicia Durán; Joaquín Fernández Chapter 16 Performance of Nd3+ As Structural Probe of Rare-Earth Distribution in Transparent Nanostructured Glass-Ceramics, Quantum Nano-Photonics (2018), p. 297 | DOI:10.1007/978-94-024-1544-5_16
  • Jiankun Deng; Wei Li; Haoran Zhang; Yingliang Liu; Bingfu Lei; Haiming Zhang; Lingshan Liu; Xue Bai; Haoyang Luo; Hongzhong Liu; Wei‐Ren Liu; Jing Wang Eu3+‐Doped Phosphor‐in‐Glass: A Route toward Tunable Multicolor Materials for Near‐UV High‐Power Warm‐White LEDs, Advanced Optical Materials, Volume 5 (2017) no. 3 | DOI:10.1002/adom.201600910
  • G. Gorni; R. Balda; J. Fernández; I. Iparraguirre; J. J. Velázquez; Y. Castro; L. Pascual; G. Chen; M. Sundararajan; M. J. Pascual; A. Durán Oxyfluoride glass–ceramic fibers doped with Nd3+: structural and optical characterization, CrystEngComm, Volume 19 (2017) no. 44, p. 6620 | DOI:10.1039/c7ce01380a
  • Andrzej M. Kłonkowski; Wiesław Wiczk; Karol Szczodrowski; Dorota Wileńska; Natalia Górecka; Małgorzata Szyszkowska White emitting GeO2PbO Bi2O3SrF2 glass and nano-glass ceramics co-doped with Eu3+, Tb3+ and Tm3+ ions, Journal of Alloys and Compounds, Volume 705 (2017), p. 539 | DOI:10.1016/j.jallcom.2017.02.153
  • Hadi Rahimian; Hossein Mokhtari; Seyed Pezhman Shirmardi Improvement of Eu3+ emissions in oxyfluoride glass and nano glass-ceramic by electron beam irradiation, Journal of Luminescence, Volume 187 (2017), p. 535 | DOI:10.1016/j.jlumin.2017.03.025
  • Yousef Hatefi; Dariush Souri; Hossein Beigpour Optical and structural properties of Yb ion doped chlorophosphate glasses and glass–ceramics, Journal of Materials Science: Materials in Electronics, Volume 28 (2017) no. 1, p. 939 | DOI:10.1007/s10854-016-5611-1
  • M. Vermillac; J.‐F. Lupi; F. Peters; M. Cabié; P. Vennéguès; C. Kucera; T. Neisius; J. Ballato; W. Blanc Fiber‐draw‐induced elongation and break‐up of particles inside the core of a silica‐based optical fiber, Journal of the American Ceramic Society, Volume 100 (2017) no. 5, p. 1814 | DOI:10.1111/jace.14774
  • Rolindes Balda; R. Morea; J. Gonzalo; J. Fernandez Luminescence of Er3+ Ions in Nanocrystalline Glass-Ceramics, Nano-Optics: Principles Enabling Basic Research and Applications (2017), p. 301 | DOI:10.1007/978-94-024-0850-8_15
  • Manuel Vermillac; Hussein Fneich; Jean-François Lupi; Jean-Baptiste Tissot; Courtney Kucera; Philippe Vennéguès; Ahmad Mehdi; Daniel R. Neuville; John Ballato; Wilfried Blanc Use of thulium-doped LaF3 nanoparticles to lower the phonon energy of the thulium's environment in silica-based optical fibres, Optical Materials, Volume 68 (2017), p. 24 | DOI:10.1016/j.optmat.2016.11.042
  • M. Reza Dousti; Atiar R. Molla; Ana Candida M. Rodrigues; Andrea S.S. de Camargo Eu 3+ and Ce 3+ co-doped aluminosilicate glasses and transparent glass-ceramics containing gahnite nanocrystals, Optical Materials, Volume 69 (2017), p. 372 | DOI:10.1016/j.optmat.2017.04.054
  • M. Soleymani Zarabad; M. Rezvani Effects of Y2O3 on crystallization kinetics of SiO2-Al2O3-CaO-CaF2 oxy-fluoride glass-ceramic system, Results in Physics, Volume 7 (2017), p. 2958 | DOI:10.1016/j.rinp.2017.07.021
  • Jiangbo Zhao; Xianlin Zheng; Erik P. Schartner; Paul Ionescu; Run Zhang; Tich‐Lam Nguyen; Dayong Jin; Heike Ebendorff‐Heidepriem Upconversion Nanocrystal‐Doped Glass: A New Paradigm for Photonic Materials, Advanced Optical Materials, Volume 4 (2016) no. 10, p. 1507 | DOI:10.1002/adom.201600296
  • Yiguang Jiang; Jintai Fan; Benxue Jiang; Xiaojian Mao; Chunlin Zhou; Long Zhang Structure and optical properties of transparent Er 3+ -doped CaF 2 –silica glass ceramic prepared by controllable sol–gel method, Ceramics International, Volume 42 (2016) no. 8, p. 9571 | DOI:10.1016/j.ceramint.2016.03.039
  • B. Karmakar Fundamentals of Glass and Glass Nanocomposites, Glass Nanocomposites (2016), p. 3 | DOI:10.1016/b978-0-323-39309-6.00001-8
  • U.R. Rodríguez-Mendoza; F. Lahoz NIR upconversion emission of Tm 3+ doped glassceramics for solar cells applications, Journal of Luminescence, Volume 179 (2016), p. 40 | DOI:10.1016/j.jlumin.2016.06.052
  • Fangfang Hu; Jiangkun Cao; Xiantao Wei; Xinyue Li; Jiajia Cai; Hai Guo; Yonghu Chen; Chang-Kui Duan; Min Yin Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion, Journal of Materials Chemistry C, Volume 4 (2016) no. 42, p. 9976 | DOI:10.1039/c6tc03946d
  • Pinit Kidkhunthod; Atipong Bootchanont; Adrian C. Barnes Structural investigation of gallate glass using L3-edge extended X-ray absorption spectroscopy and computer simulation, Journal of Non-Crystalline Solids, Volume 448 (2016), p. 27 | DOI:10.1016/j.jnoncrysol.2016.06.034
  • Wilfried Blanc; Bernard Dussardier Formation and applications of nanoparticles in silica optical fibers, Journal of Optics, Volume 45 (2016) no. 3, p. 247 | DOI:10.1007/s12596-015-0281-6
  • Natalia Pawlik; Barbara Szpikowska-Sroka; Marta Sołtys; Wojciech A. Pisarski Optical properties of silica sol-gel materials singly- and doubly-doped with Eu3+and Gd3+ ions, Journal of Rare Earths, Volume 34 (2016) no. 8, p. 786 | DOI:10.1016/s1002-0721(16)60095-9
  • Guna Krieke; Anatolijs Sarakovskis Crystallization and upconversion luminescence of distorted fluorite nanocrystals in Ba2+ containing oxyfluoride glass ceramics, Journal of the European Ceramic Society, Volume 36 (2016) no. 7, p. 1715 | DOI:10.1016/j.jeurceramsoc.2016.01.025
  • Daniele Chiriu; Pier Carlo Ricci; Carlo Maria Carbonaro; Davide Nadali; Andrea Polcaro; Francesca Mocci Drying oil detected in mid-third Millennium B.C. Mesopotamian clay artifacts: Raman spectroscopy and DFT simulation study, Microchemical Journal, Volume 124 (2016), p. 386 | DOI:10.1016/j.microc.2015.09.013
  • Gyuhyon Lee; Christian Struebing; Brent Wagner; Christopher Summers; Yong Ding; Alex Bryant; Naresh Thadhani; Daniel Shedlock; Josh Star-Lack; Zhitao Kang Synthesis and characterization of a BaGdF5:Tb glass ceramic as a nanocomposite scintillator for x-ray imaging, Nanotechnology, Volume 27 (2016) no. 20, p. 205203 | DOI:10.1088/0957-4484/27/20/205203
  • F. Enrichi; C. Armellini; G. Battaglin; F. Belluomo; S. Belmokhtar; A. Bouajaj; E. Cattaruzza; M. Ferrari; F. Gonella; A. Lukowiak; M. Mardegan; S. Polizzi; E. Pontoglio; G.C. Righini; C. Sada; E. Trave; L. Zur Silver doping of silica-hafnia waveguides containing Tb 3+ /Yb 3+ rare earths for downconversion in PV solar cells, Optical Materials, Volume 60 (2016), p. 264 | DOI:10.1016/j.optmat.2016.07.048
  • S Guddala; A Chiappini; C Armellini; S Turell; G C Righini; M Ferrari; D Narayana Rao Fabrication and characterization of Er+3 doped SiO2/SnO2 glass-ceramic thin films for planar waveguide applications, IOP Conference Series: Materials Science and Engineering, Volume 73 (2015), p. 012102 | DOI:10.1088/1757-899x/73/1/012102
  • Weirong Wang; Huiping Gao; Yanli Mao Highly matched spectrum needed for photosynthesis in Ce3+/Er3+/Yb3+ tri-doped oxyfluoride glass ceramics, Journal of Alloys and Compounds, Volume 648 (2015), p. 75 | DOI:10.1016/j.jallcom.2015.06.182
  • Bin Yang; Qian Wang; Weihuan Zhang; Shaoye Ouyang; Yuepin Zhang; Haiping Xia; Xinyuan Sun Luminescent properties of Tb3+-doped transparent glass ceramics, Journal of Luminescence, Volume 158 (2015), p. 390 | DOI:10.1016/j.jlumin.2014.10.007
  • James W E Drewitt; Sandro Jahn; Chrystèle Sanloup; Charlotte de Grouchy; Gaston Garbarino; Louis Hennet Development of chemical and topological structure in aluminosilicate liquids and glasses at high pressure, Journal of Physics: Condensed Matter, Volume 27 (2015) no. 10, p. 105103 | DOI:10.1088/0953-8984/27/10/105103
  • Fangfang Hu; Xiantao Wei; Sha Jiang; Shan Huang; Yanguang Qin; Yonghu Chen; Chang‐Kui Duan; Min Yin; A. Srivastava Fabrication and Luminescence Properties of Transparent Glass‐Ceramics Containing Eu3+‐Doped TbPO4 Nanocrystals, Journal of the American Ceramic Society, Volume 98 (2015) no. 2, p. 464 | DOI:10.1111/jace.13283
  • J. Massera; P. Głuchowski; M. Lastusaari; L.C.V. Rodrigues; L. Petit; J. Hölsä; L. Hupa; M. Hupa New alternative route for the preparation of phosphate glasses with persistent luminescence properties, Journal of the European Ceramic Society, Volume 35 (2015) no. 4, p. 1255 | DOI:10.1016/j.jeurceramsoc.2014.11.007
  • Richard I. Epstein; Denis V. Seletskiy; Mansoor Sheik-Bahae; Venkata Krishaniah Kummara; Yannick Ledemi; Elton Soares de Lima Filho; Younes Messaddeq; Raman Kashyap, Laser Refrigeration of Solids VIII, Volume 9380 (2015), p. 93800P | DOI:10.1117/12.2079459
  • M. Rezvani; L. Farahinia Structure and optical band gap study of transparent oxyfluoride glass-ceramics containing CaF2 nanocrystals, Materials Design, Volume 88 (2015), p. 252 | DOI:10.1016/j.matdes.2015.08.159
  • Wilfried Blanc Propriétés de luminescence des ions de terres rares dopés dans des nanoparticules diélectriques incorporées dans une matrice vitreuse, Matériaux Techniques, Volume 103 (2015) no. 4, p. 407 | DOI:10.1051/mattech/2015049
  • Marcin Środa; Krzysztof Szlósarczyk; Marek Różański; Maciej Sitarz; Piotr Jeleń Spectroscopic properties of transparent Er-doped oxyfluoride glass–ceramics with GdF3, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 134 (2015), p. 631 | DOI:10.1016/j.saa.2014.06.066
  • W. Blanc; B. Dussardier, 12th International Conference on Fiber Optics and Photonics (2014), p. S3A.1 | DOI:10.1364/photonics.2014.s3a.1
  • M. Vermillac; J.F. Lupi; M. Ude; S. Trzesien; B. Dussardier; W. Blanc; O. Totterau; P. Vennegues; C. Kucera; J. Ballato, Advanced Photonics (2014), p. SoTh1B.4 | DOI:10.1364/sof.2014.soth1b.4
  • Mohammad Sadegh Shakeri Production of ultra-transparent glass-ceramics via controlled crystallization of nanocrystals in the glassy matrix of LAST, International Journal of Minerals, Metallurgy, and Materials, Volume 21 (2014) no. 1, p. 71 | DOI:10.1007/s12613-014-0867-z
  • Mohammad Sadegh Shakeri Fabrication, microstructure, and optical properties of nanocrystalline transparent LAST glass ceramics containing CeO2, International Journal of Minerals, Metallurgy, and Materials, Volume 21 (2014) no. 4, p. 401 | DOI:10.1007/s12613-014-0922-9
  • C.E. Secu; C. Bartha; S. Polosan; M. Secu Thermally activated conversion of a silicate gel to an oxyfluoride glass ceramic: Optical study using Eu3+ probe ion, Journal of Luminescence, Volume 146 (2014), p. 539 | DOI:10.1016/j.jlumin.2013.10.013
  • M. H. Imanieh; I. R. Martín; J. Gonzalez-Platas; B. Eftekhari Yekta; V. K. Marghussian; S. Shakhesi; Mohsen Rahmani Behavior of Yb3+ and Er3+ during Heat Treatment in Oxyfluoride Glass Ceramics, Journal of Nanomaterials, Volume 2014 (2014) no. 1 | DOI:10.1155/2014/171045
  • T.G.V.M. Rao; A. Rupesh Kumar; K. Neeraja; N. Veeraiah; M. Rami Reddy Optical and structural investigation of Dy3+–Nd3+ co-doped in magnesium lead borosilicate glasses, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 118 (2014), p. 744 | DOI:10.1016/j.saa.2013.09.061
  • G. Lakshminarayana; Eric M. Weis; A.C. Lira; Ulises Caldiño; Darrick J. Williams; Markus P. Hehlen Cross Relaxation in rare-earth-doped oxyfluoride glasses, Journal of Luminescence, Volume 139 (2013), p. 132 | DOI:10.1016/j.jlumin.2013.02.039
  • Culala Rajasekharaudayar Kesavulu; Mi-Yeon Yoo; Jin-Ho Lee; Ki-Soo Lim; Peyala Dharmaiah; Chalicheemalapalli Kulala Jayasankar; Palamandala Babu Optical and upconversion properties of Er3+-doped oxyfluoride transparent glass-ceramics containing SrF2 nanocrystals, Journal of Materials Research, Volume 28 (2013) no. 11, p. 1481 | DOI:10.1557/jmr.2013.128
  • J Pellicer-Porres; A Segura; G Martínez-Criado; U R Rodríguez-Mendoza; V Lavín Formation of nanostructures in Eu3+doped glass–ceramics: an XAS study, Journal of Physics: Condensed Matter, Volume 25 (2013) no. 2, p. 025303 | DOI:10.1088/0953-8984/25/2/025303
  • Ruchika Bagga; Venu Gopal Achanta; Ashutosh Goel; José M.F. Ferreira; Narinder Pal Singh; Davinder Paul Singh; Mauro Falconieri; Gopi Sharma Dy3+-doped nano-glass ceramics comprising NaAlSiO4 and NaY9Si6O26 nanocrystals for white light generation, Materials Science and Engineering: B, Volume 178 (2013) no. 3, p. 218 | DOI:10.1016/j.mseb.2012.10.023
  • Rodrigo F. de Morais; Elias Oliveira Serqueira; Noelio Oliveira Dantas Effect of thermal annealing on the spectroscopic parameters of Er3+-doped sodium silicate glass, Optical Materials, Volume 35 (2013) no. 12, p. 2122 | DOI:10.1016/j.optmat.2013.05.032
  • Anal Tarafder; Atiar Rahaman Molla; Basudeb Karmakar Enhanced photoluminescence and structure of Dy3+-doped SrBi2Ta2O9-containing transparent glass-ceramics, Optical Materials, Volume 35 (2013) no. 8, p. 1549 | DOI:10.1016/j.optmat.2013.03.022
  • Mohammad Hassan Imanieh; Bijan Eftekhari Yekta; V. Marghussian; Saeed Shakhesi; I.R. Martín Crystallization of nano calcium fluoride in CaF2–Al2O3–SiO2 system, Solid State Sciences, Volume 17 (2013), p. 76 | DOI:10.1016/j.solidstatesciences.2012.11.008
  • Hellmut Eckert; Sidney J.L. Ribeiro; Silvia H. Santagneli; Marcelo Nalin; Gael Poirier; Younès Messaddeq Glasses on the Nanoscale, Springer Handbook of Nanomaterials (2013), p. 665 | DOI:10.1007/978-3-642-20595-8_18
  • Ruchika Bagga; Mauro Falconieri; Venu Gopal Achanta; José M. F. Ferreira; Ashutosh Goel; Narinder Pal Singh; Nancy Sharma; Gopi Sharma Structural and Optical Investigation of Rare Earth Doped Oxyfluoride Glasses, Transactions of the Indian Ceramic Society, Volume 72 (2013) no. 1, p. 18 | DOI:10.1080/0371750x.2013.794013
  • Valerie Mauroy; Wilfried Blanc; Michele Ude; Stanislaw Trzesien; Bernard Dussardier; Christelle Guillermier; Xavier Bidault; Stephane Chaussedent, 2012 Photonics Global Conference (PGC) (2012), p. 1 | DOI:10.1109/pgc.2012.6457946
  • M.R. Tohidifar; P. Alizadeh; P. Riello; B. Eftekhari-yekta; A.R. Aghaei Sol–gel preparation and characterization of nano-crystalline lithium–mica glass–ceramic, Ceramics International, Volume 38 (2012) no. 4, p. 2813 | DOI:10.1016/j.ceramint.2011.11.052
  • G.P. Kothiyal; Arvind Ananthanarayanan; G.K. Dey Glass and Glass-Ceramics, Functional Materials (2012), p. 323 | DOI:10.1016/b978-0-12-385142-0.00009-x
  • A. V. Egorysheva; V. D. Volodin; I. V. Berezovskaya; E. V. Zubar’; V. M. Skorikov; T. Milenov; P. Rafailov Effect of Eu2O3 doping on the crystallization behavior of BaO-Bi2O3-B2O3 glasses, Inorganic Materials, Volume 48 (2012) no. 9, p. 948 | DOI:10.1134/s0020168512090051
  • Valérie Mauroy; Wilfried Blanc; Michèle Ude; Stanislaw Trzesien; Bernard Dussardier; Christelle Guillermier; Xavier Bidault; Stéphane Chaussedent, International Conference on Fibre Optics and Photonics (2012), p. T2A.4 | DOI:10.1364/photonics.2012.t2a.4
  • A de Pablos-Martín; A Durán; M J Pascual Nanocrystallisation in oxyfluoride systems: mechanisms of crystallisation and photonic properties, International Materials Reviews, Volume 57 (2012) no. 3, p. 165 | DOI:10.1179/1743280411y.0000000004
  • M. Secu; C. E. Secu; M. Sima Sol–gel template synthesis of luminescent glass–ceramic rods, Journal of Nanoparticle Research, Volume 14 (2012) no. 4 | DOI:10.1007/s11051-012-0772-1
  • Mohammad Hasan Imanieh; Bijan Eftekhari Yekta; Vahak Marghussian; Inocencio Rafael Martin Benenzuela; Alberto Hernandez Creus; Saeed Shakhesi; Esmaeil Eslami Effect of alumina content and heat treatment on microstructure and upconversion emission of Er3+ ions in oxyfluoride glass-ceramics, Journal of Rare Earths, Volume 30 (2012) no. 12, p. 1228 | DOI:10.1016/s1002-0721(12)60211-7
  • Mohammad H. Imanieh; Inocencio R. Martín; Bijan Eftekhari Yekta; Vahak K. Marghussian; Saeed Shakhesi; L. Pinckney Improved Cooperative Emission in Ytterbium‐Doped Oxyfluoride Glass‐Ceramics ContainingCaF2Nanocrystals, Journal of the American Ceramic Society, Volume 95 (2012) no. 12, p. 3827 | DOI:10.1111/jace.12012
  • Chaouki Bensalem; Michel Mortier; Daniel Vivien; Patrick Gredin; Gilles Patriarche; Madjid Diaf Thermal and Structural Characterization of Transparent Rare-Earth Doped Lead Fluoride Glass-Ceramics, New Journal of Glass and Ceramics, Volume 02 (2012) no. 02, p. 65 | DOI:10.4236/njgc.2012.22010
  • N. Hamedani Golshan; B. Eftekhari Yekta; V.K. Marghussian Crystallization and optical properties of a transparent mullite glass ceramic, Optical Materials, Volume 34 (2012) no. 4, p. 596 | DOI:10.1016/j.optmat.2011.08.034
  • A.C. Galca; N. Preda; C.E. Secu; C.R. Luculescu; M. Secu Spectroscopic ellipsometry investigations of Eu-doped oxy-fluoride glass and glass-ceramics, Optical Materials, Volume 34 (2012) no. 8, p. 1493 | DOI:10.1016/j.optmat.2012.03.015
  • Shu Jiang Liu; Yan Fei Zhang Transparent Glass-Ceramics Derived from Spontaneously Crystallized Phosphosilicte Glasses, Advanced Materials Research, Volume 239-242 (2011), p. 1096 | DOI:10.4028/www.scientific.net/amr.239-242.1096
  • Xvsheng Qiao; Xianping Fan; Zheng Xue; Xuanhe Xu Short-wavelength upconversion luminescence of Yb3+/Tm3+ co-doped glass ceramic containing SrF2 nanocrystals, Journal of Non-Crystalline Solids, Volume 357 (2011) no. 1, p. 83 | DOI:10.1016/j.jnoncrysol.2010.09.008
  • Kamil Wezka; Anita Zeidler; Philip S. Salmon; Pinit Kidkhunthod; Adrian C. Barnes; Henry E. Fischer Structure of praseodymium and neodymium gallate glasses, Journal of Non-Crystalline Solids, Volume 357 (2011) no. 14, p. 2511 | DOI:10.1016/j.jnoncrysol.2010.12.058
  • S.J. Liu; Y.F. Zhang; W. He; Y.Z. Yue Transparent phosphosilicate glasses containing crystals formed during cooling of melts, Journal of Non-Crystalline Solids, Volume 357 (2011) no. 24, p. 3897 | DOI:10.1016/j.jnoncrysol.2011.07.029
  • Y. Hatefi; N. Shahtahmasebi; A. Moghimi; E. Attaran Ultraviolet to visible frequency-conversion properties of rare earths doped glass ceramics, Journal of Rare Earths, Volume 29 (2011) no. 5, p. 484 | DOI:10.1016/s1002-0721(10)60484-x
  • Wilfried Blanc; Valérie Mauroy; Luan Nguyen; B.N. Shivakiran Bhaktha; Patrick Sebbah; Bishnu P. Pal; Bernard Dussardier; J. Heo Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition, Journal of the American Ceramic Society, Volume 94 (2011) no. 8, p. 2315 | DOI:10.1111/j.1551-2916.2011.04672.x
  • Fugui Yang; Guitang Chen; Zhenyu You; Chenli Sun; Jiafeng Cao; Yuexia Ji; Yeqing Wang; Yan Wang; Zhaojie Zhu; Jianfu Li; Chaoyang Tu The transformation of Eu3+→Eu2+ in SiO2–Al2O3–NaF–YF3: Eu glasses and glass ceramics, Materials Letters, Volume 65 (2011) no. 9, p. 1337 | DOI:10.1016/j.matlet.2011.01.076
  • C. Bensalem; M. Mortier; D. Vivien; M. Diaf Optical investigation of Eu3+:PbF2 ceramics and transparent glass–ceramics, Optical Materials, Volume 33 (2011) no. 6, p. 791 | DOI:10.1016/j.optmat.2010.12.024
  • Lixin Yu; Hai Liu Photoluminescent properties of Dy3+ in MgO-Ga2O3-SiO2 nano-glass-ceramic prepared by sol–gel method, Physica B: Condensed Matter, Volume 406 (2011) no. 15-16, p. 3101 | DOI:10.1016/j.physb.2011.05.015
  • S. Polosan; A.C. Galca; M. Secu Band-gap correlations in Bi4Ge3O12 amorphous and glass–ceramic materials, Solid State Sciences, Volume 13 (2011) no. 1, p. 49 | DOI:10.1016/j.solidstatesciences.2010.10.007
  • Jing Shao; Guohui Feng; Hongbo Zhang; Guangyuan Ma; Chunhui Su Preparation and Characterization of ZnO‐Al 2 O 3 ‐SiO 2 Transparent Glass‐Ceramics, Ceramic Materials and Components for Energy and Environmental Applications (2010), p. 639 | DOI:10.1002/9780470640845.ch92
  • Zhifa Shan; Daqin Chen; Yunlong Yu; Ping Huang; Hang Lin; Yuansheng Wang Luminescence in rare earth-doped transparent glass ceramics containing GdF3 nanocrystals for lighting applications, Journal of Materials Science, Volume 45 (2010) no. 10, p. 2775 | DOI:10.1007/s10853-010-4266-1
  • C. Bensalem; M. Mortier; D. Vivien; M. Diaf Thermal and optical investigation of EuF3-doped lead fluorogermanate glasses, Journal of Non-Crystalline Solids, Volume 356 (2010) no. 1, p. 56 | DOI:10.1016/j.jnoncrysol.2009.09.023
  • P. Babu; Kyoung Hyuk Jang; Eun Sik Kim; Liang Shi; R. Vijaya; V. Lavín; C.K. Jayasankar; Hyo Jin Seo Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass–ceramics, Journal of Non-Crystalline Solids, Volume 356 (2010) no. 4-5, p. 236 | DOI:10.1016/j.jnoncrysol.2009.11.010
  • Rodrigo Santos; Luís F. Santos; Rui M. Almeida Optical and spectroscopic properties of Er-doped niobium germanosilicate glasses and glass ceramics, Journal of Non-Crystalline Solids, Volume 356 (2010) no. 44-49, p. 2677 | DOI:10.1016/j.jnoncrysol.2010.03.036
  • I. Alekseeva; O. Dymshits; M. Tsenter; A. Zhilin; V. Golubkov; I. Denisov; N. Skoptsov; A. Malyarevich; K. Yumashev Optical applications of glass-ceramics, Journal of Non-Crystalline Solids, Volume 356 (2010) no. 52-54, p. 3042 | DOI:10.1016/j.jnoncrysol.2010.05.103
  • Lixin Yu; Hai Liu; Wei Sun; Masayuki Nogami The photoluminescent properties of Eu3+ in MgO–Ga2O3–SiO2 nanocrystalline glass-ceramic, Journal of Physics and Chemistry of Solids, Volume 71 (2010) no. 12, p. 1656 | DOI:10.1016/j.jpcs.2010.09.003
  • Rodrigo Santos; Luís F. Santos; Rui M. Almeida; Joachim Deubener; Lothar Wondraczek Crystallization of niobium germanosilicate glasses, Journal of Solid State Chemistry, Volume 183 (2010) no. 1, p. 128 | DOI:10.1016/j.jssc.2009.10.031
  • M. Mattarelli; G. Gasperi; M. Montagna; P. Verrocchio Transparency and long-ranged fluctuations: The case of glass ceramics, Physical Review B, Volume 82 (2010) no. 9 | DOI:10.1103/physrevb.82.094204
  • P. Babu; Kyoung Hyuk Jang; Eun Sik Kim; Liang Shi; Hyo Jin Seo; F. Rivera-López; U. R. Rodríguez-Mendoza; V. Lavín; R. Vijaya; C. K. Jayasankar; L. Rama Moorthy Spectral investigations on Dy3+-doped transparent oxyfluoride glasses and nanocrystalline glass ceramics, Journal of Applied Physics, Volume 105 (2009) no. 1 | DOI:10.1063/1.3021451
  • Omar. D. Gutierrez; Edison Osorio; Carlos. G. Paucar; Rafael Cogollo; C.Z. Hadad Synthesis and characterization of thermoluminescent glass-ceramics Li2O–Al2O3–SiO2:CeO2, Journal of Luminescence, Volume 129 (2009) no. 8, p. 836 | DOI:10.1016/j.jlumin.2009.03.006
  • G.C. Righini; S. Berneschi; G. Nunzi Conti; S. Pelli; E. Moser; R. Retoux; P. Féron; R.R. Gonçalves; G. Speranza; Y. Jestin; M. Ferrari; A. Chiasera; A. Chiappini; C. Armellini Er3+-doped silica–hafnia films for optical waveguides and spherical resonators, Journal of Non-Crystalline Solids, Volume 355 (2009) no. 37-42, p. 1853 | DOI:10.1016/j.jnoncrysol.2008.12.022
  • M. Secu; C.E. Secu; S. Polosan; G. Aldica; C. Ghica Crystallization and spectroscopic properties of Eu-doped CaF2 nanocrystals in transparent oxyfluoride glass-ceramics, Journal of Non-Crystalline Solids, Volume 355 (2009) no. 37-42, p. 1869 | DOI:10.1016/j.jnoncrysol.2009.04.062
  • Xvsheng Qiao; Xianping Fan; Minquan Wang; Xianghua Zhang Spectroscopic properties of Er3+and Yb3+co-doped glass ceramics containing SrF2nanocrystals, Journal of Physics D: Applied Physics, Volume 42 (2009) no. 5, p. 055103 | DOI:10.1088/0022-3727/42/5/055103
  • M. Rozanski; K. Wisniewski; J. Szatkowski; Cz. Koepke; M. Środa Effect of thermal treatment on excited state spectroscopy of oxyfluoride borosilicate glass activated by Pr3+ ions, Optical Materials, Volume 31 (2009) no. 3, p. 548 | DOI:10.1016/j.optmat.2007.10.022
  • C. Armellini; S.N.B. Bhaktha; A. Chiappini; A. Chiasera; M. Ferrari; Y. Jestin; P. Feron; E. Moser; C. Duverger Arfuso; B. Boulard; G. Speranza; L. Minati; G. Nunzi Conti; S. Pelli; G.C. Righini; P.T. Huy, 2008 10th Anniversary International Conference on Transparent Optical Networks (2008), p. 239 | DOI:10.1109/icton.2008.4598699
  • Zhang Xiang-Yu; Zheng Hai-Rong; Gao Dang-Li Spectroscopic study of thulium doped transparent glass ceramics, Chinese Physics B, Volume 17 (2008) no. 11, p. 4328 | DOI:10.1088/1674-1056/17/11/061
  • G. Dominiak-Dzik; W. Ryba-Romanowski Structural and luminescent properties of crystalline microstructure in the GeO2–PbO–PbF2 glass-ceramics doped with luminescent ions, Journal of Alloys and Compounds, Volume 451 (2008) no. 1-2, p. 586 | DOI:10.1016/j.jallcom.2007.04.117
  • Gaofeng Feng; Shifeng Zhou; Jiaxing Bao; Xi Wang; Shiqing Xu; Jianrong Qiu Transparent Ni2+-doped lithium aluminosilicate glass–ceramics with broadband infrared luminescence, Journal of Alloys and Compounds, Volume 457 (2008) no. 1-2, p. 506 | DOI:10.1016/j.jallcom.2007.03.034
  • Hairong Zheng; Dangli Gao; Xiangyu Zhang; Enjie He; Xisheng Zhang Fluorescence characteristics of Tm3+ in different local environments, Journal of Applied Physics, Volume 104 (2008) no. 1 | DOI:10.1063/1.2953063
  • Thiana Berthier; Vladimir M. Fokin; Edgar D. Zanotto New large grain, highly crystalline, transparent glass–ceramics, Journal of Non-Crystalline Solids, Volume 354 (2008) no. 15-16, p. 1721 | DOI:10.1016/j.jnoncrysol.2007.08.052
  • W.A. Pisarski; T. Goryczka; J. Pisarska; G. Dominiak-Dzik; W. Ryba-Romanowski Effect of heat treatment on Er3+ containing multicomponent oxyfluoride lead borate glass system, Journal of Non-Crystalline Solids, Volume 354 (2008) no. 2-9, p. 492 | DOI:10.1016/j.jnoncrysol.2007.07.054
  • Fanqing Zeng; Guozhong Ren; Xiannian Qiu; Qibin Yang; Jingwu Chen The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2–PbF2–PbO glass ceramics, Journal of Non-Crystalline Solids, Volume 354 (2008) no. 29, p. 3428 | DOI:10.1016/j.jnoncrysol.2008.03.008
  • L A Bueno; A S Gouveia-Neto; E B da Costa; Y Messaddeq; S J L Ribeiro Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe, Journal of Physics: Condensed Matter, Volume 20 (2008) no. 14, p. 145201 | DOI:10.1088/0953-8984/20/14/145201
  • M. Mattarelli; M. Montagna; P. Verrocchio Optical scattering in glass ceramics, Philosophical Magazine, Volume 88 (2008) no. 33-35, p. 4125 | DOI:10.1080/14786430802555722
  • M.M.I. Khalil Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide, Applied Physics A, Volume 86 (2007) no. 4, p. 505 | DOI:10.1007/s00339-006-3802-y
  • M. Mattarelli; M. Montagna; P. Verrocchio Ultratransparent glass ceramics: The structure factor and the quenching of the Rayleigh scattering, Applied Physics Letters, Volume 91 (2007) no. 6 | DOI:10.1063/1.2768642
  • Z. Pan; A. Ueda; R. Mu; S.H. Morgan Upconversion luminescence in Er3+-doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics, Journal of Luminescence, Volume 126 (2007) no. 1, p. 251 | DOI:10.1016/j.jlumin.2006.07.021
  • Andrew Edgar The core-shell particle model for light scattering in glass–ceramics: Mie scattering analysis and discrete dipole simulations, Journal of Materials Science: Materials in Electronics, Volume 18 (2007) no. S1, p. 335 | DOI:10.1007/s10854-007-9214-8
  • C. Armellini; A. Chiappini; A. Chiasera; M. Ferrari; Y. Jestin; M. Mortier; E. Moser; R. Retoux; G. C. Righini Rare Earth-Activated Silica-Based Nanocomposites, Journal of Nanomaterials, Volume 2007 (2007), p. 1 | DOI:10.1155/2007/84745
  • S.E. Mekhlouf; A. Boukenter; M. Ferrari; F. Goutaland; N. Ollier; Y. Ouerdane UV assisted local crystallization in Er3+ doped oxy-fluoride glass, Journal of Non-Crystalline Solids, Volume 353 (2007) no. 5-7, p. 506 | DOI:10.1016/j.jnoncrysol.2006.10.042
  • Qiu Guanming; Li Xikum; Qiu Tai; Zhao Haitao; Yu Honghao; Ma Ruiting Application of Rare Earths in Advanced Ceramic Materials, Journal of Rare Earths, Volume 25 (2007), p. 281 | DOI:10.1016/s1002-0721(07)60489-x
  • Li Xikun; Qiu Guanming; Qiu Tai; Zhao Haitao; Bai Hua; Sun Xudong Al2O3/TiCN-0.2 | DOI:10.1016/s1002-0721(07)60519-5
  • Li Xikun; Qiu Guanming; Qiu Tai; Zhao Haitao; Bai Hua; Sun Xudong Synthesis of Al2O3/TiCN-0.2 | DOI:10.1016/s1002-0721(07)60424-4
  • Daliang Zhao; Xvsheng Qiao; Xianping Fan; Minquan Wang Local vibration around rare earth ions in SiO2–PbF2 glass and glass ceramics using Eu3+ probe, Physica B: Condensed Matter, Volume 395 (2007) no. 1-2, p. 10 | DOI:10.1016/j.physb.2006.12.007
  • Xvsheng Qiao; Xianping Fan; Minquan Wang Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals, Applied Physics Letters, Volume 89 (2006) no. 11 | DOI:10.1063/1.2355363
  • Xvsheng Qiao; Xianping Fan; Jin Wang; Minquan Wang Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals, Journal of Applied Physics, Volume 99 (2006) no. 7 | DOI:10.1063/1.2189021
  • Z. Pan; A. Ueda; M. Hays; R. Mu; S.H. Morgan Studies of Er3+ doped germanate–oxyfluoride and tellurium–germanate–oxyfluoride transparent glass–ceramics, Journal of Non-Crystalline Solids, Volume 352 (2006) no. 8, p. 801 | DOI:10.1016/j.jnoncrysol.2006.01.023
  • Xvsheng Qiao; Xianping Fan; Minquan Wang Luminescence behavior of Er3+ in glass ceramics containing BaF2 nanocrystals, Scripta Materialia, Volume 55 (2006) no. 3, p. 211 | DOI:10.1016/j.scriptamat.2006.04.023
  • B.S. Richards Luminescent layers for enhanced silicon solar cell performance: Down-conversion, Solar Energy Materials and Solar Cells, Volume 90 (2006) no. 9, p. 1189 | DOI:10.1016/j.solmat.2005.07.001
  • C. Tosello; M. Montagna; M. Mattarelli; M. Ferrari; S. Chaussedent; A. Monteil; V. K. Tikhomirov; A. B. Seddon Er3+- and Tm3+-Containing Ultra-Transparent Oxyfluoride-Based Glass Ceramics for Wavelength Division Multiplexing Optical Amplifiers, Glass Physics and Chemistry, Volume 31 (2005) no. 3, p. 377 | DOI:10.1007/s10720-005-0072-2
  • M. Mattarelli; M. Montagna; F. Rossi; M. Ferrari; V. K. Tikhomirov; A. B. Seddon Tm3+-Activated Transparent Oxyfluoride Glass Ceramics: A Study by Raman Scattering of the Nanocrystal Size Distribution, Glass Physics and Chemistry, Volume 31 (2005) no. 4, p. 519 | DOI:10.1007/s10720-005-0092-y
  • G. Dantelle; M. Mortier; D. Vivien; G. Patriarche Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics, Journal of Materials Research, Volume 20 (2005) no. 2, p. 472 | DOI:10.1557/jmr.2005.0051
  • Xvsheng Qiao; Xianping Fan; Jin Wang; Minquan Wang Luminescence behavior of Er3+ ions in glass–ceramics containing CaF2 nanocrystals, Journal of Non-Crystalline Solids, Volume 351 (2005) no. 5, p. 357 | DOI:10.1016/j.jnoncrysol.2004.11.021
  • Gian Domenico Sorarù; Yujun Zhang; Maurizio Ferrari; Luca Zampedri; Rogéria Rocha Gonçalves Novel Er-doped SiC/SiO2 nanocomposites: Synthesis via polymer pyrolysis and their optical characterization, Journal of the European Ceramic Society, Volume 25 (2005) no. 2-3, p. 277 | DOI:10.1016/j.jeurceramsoc.2004.08.009
  • F. Lahoz; I.R. Martín; U.R. Rodríguez-Mendoza; I. Iparraguirre; J. Azkargorta; A. Mendioroz; R. Balda; J. Fernández; V. Lavín Rare earths in nanocrystalline glass–ceramics, Optical Materials, Volume 27 (2005) no. 11, p. 1762 | DOI:10.1016/j.optmat.2004.11.047
  • Xianghua Zhang; M.A Hongli; Jacques Lucas A new class of infrared transmitting glass-ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix, Journal of Non-Crystalline Solids, Volume 337 (2004) no. 2, p. 130 | DOI:10.1016/j.jnoncrysol.2004.03.119
  • M. Mattarelli; V.K. Tikhomirov; A.B. Seddon; M. Montagna; E. Moser; A. Chiasera; S. Chaussedent; G. Nunzi Conti; S. Pelli; G.C. Righini; L. Zampedri; M. Ferrari Tm3+-activated transparent oxy-fluoride glass–ceramics: structural and spectroscopic properties, Journal of Non-Crystalline Solids, Volume 345-346 (2004), p. 354 | DOI:10.1016/j.jnoncrysol.2004.08.043
  • L.M. Fortes; L.F. Santos; M.C. Gonçalves; R.M. Almeida; F. D’Acapito Influence of Er3+ on the early stages of crystallization of chloro-tellurite glasses studied by XRD and EXAFS, Journal of Non-Crystalline Solids, Volume 348 (2004), p. 11 | DOI:10.1016/j.jnoncrysol.2004.08.119
  • Jin Wang; Xvsheng Qiao; Xianping Fan; Minquan Wang Up-conversion and near-infrared emission of Er3+ doped transparent glass ceramics containing LaF3 nanocrystals, Physica B: Condensed Matter, Volume 353 (2004) no. 3-4, p. 242 | DOI:10.1016/j.physb.2004.10.003

Cité par 207 documents. Sources : Crossref


Commentaires - Politique