Plan
Comptes Rendus

Computational prediction of the absolute configuration of stereogenic carbon center
Comptes Rendus. Chimie, Volume 8 (2005) no. 5, pp. 923-930.

Résumés

It is suggested that the sign of the optical rotation of a chiral molecule can be deduced by calculation (RHF/6-31G(d, p) level of theory) of the relative weight of the HOMO (or HOMO-1 and so on) coefficients of the atoms attached to the stereogenic carbon atom. .

Il est montré que le signe de rotation d'une molécule chirale peut être déduit par le calcul (méthode RHF/6-31G(d, p)) de la contribution dans les plus hautes orbitales moléculaires occupées de chaque atome relié au centre stéréogénique. .

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2005.01.007
Keywords: Absolute configuration, Sign of the optical rotation, Stereogenic carbon center
Mots clés : Configurations absolues, Signe du pouvoir rotatoire, Atome de carbone stéréogénique
Maurice Santelli 1

1 Laboratoire de synthèse organique, UMR 6180 et université Paul-Cézanne (Aix–Marseille-3), « Chirotechnologies : catalyse et biocatalyse », avenue Escadrille-Normandie-Niemen, 13397 Marseille cedex 20, France
@article{CRCHIM_2005__8_5_923_0,
     author = {Maurice Santelli},
     title = {Computational prediction of the absolute configuration of stereogenic carbon center},
     journal = {Comptes Rendus. Chimie},
     pages = {923--930},
     publisher = {Elsevier},
     volume = {8},
     number = {5},
     year = {2005},
     doi = {10.1016/j.crci.2005.01.007},
     language = {en},
}
TY  - JOUR
AU  - Maurice Santelli
TI  - Computational prediction of the absolute configuration of stereogenic carbon center
JO  - Comptes Rendus. Chimie
PY  - 2005
SP  - 923
EP  - 930
VL  - 8
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crci.2005.01.007
LA  - en
ID  - CRCHIM_2005__8_5_923_0
ER  - 
%0 Journal Article
%A Maurice Santelli
%T Computational prediction of the absolute configuration of stereogenic carbon center
%J Comptes Rendus. Chimie
%D 2005
%P 923-930
%V 8
%N 5
%I Elsevier
%R 10.1016/j.crci.2005.01.007
%G en
%F CRCHIM_2005__8_5_923_0
Maurice Santelli. Computational prediction of the absolute configuration of stereogenic carbon center. Comptes Rendus. Chimie, Volume 8 (2005) no. 5, pp. 923-930. doi : 10.1016/j.crci.2005.01.007. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2005.01.007/

Version originale du texte intégral

The phenomenon of optical activity of molecules is of major importance in organic chemistry. From its discovery by Biot in 1813 and the observations of Pasteur (1848–1860), this one is the cause of the concept of tetrahedral carbon described by Le Bel and van't Hoff [1,2]. However, some stereochemical problems are present such as the prediction of the sign of the optical rotatory power.

Some efforts have been devoted to elaborate theories to relate optical rotatory power, and particularly optical rotatory dispersion and circular dichroism spectra, to molecular structure [3]. From a theoretical point of view, the calculation of the optical rotatory power of a molecule is well established by the Rosenfeld equation which involve the gyration polarizability tensor of the molecule [4–7]. But as reported by Eyring, “since the eigenfunctions of the complex molecules are not known to any high degree of accuracy, it has not as yet proved possible to determine the absolute configuration of any molecules by actual calculation” [8].

The correlation between the sign of rotation of the plane of the polarized light and the structure of the molecules has been tentatively described as “an asymmetric screw pattern of polarizability” (Brewster' rules) [9,10]. The polarizability of each four groups are derived from the atomic refraction of the atoms attached to the asymmetric center.

In 1960, Julg applied the molecular orbitals (MO) method to the optical rotatory power theory and shown that the expression for the molecular rotation is explicitly given as a function of the atomic orbitals [11]. Recently, ab initio methods have been used to study the lower electronic states and, the oscillator and optical rotatory strengths of the lower electronic transitions of oxirane and aziridine derivatives [12].

Our approach is based on the assumption that for the long wavelength radiation, changes in the direction of polarization could be correlated with the asymmetric distribution of electrons in the high occupied MO. It may be stated that in a system C1R2R3R4R5, the sign of the optical rotation could be deduced by calculation of the relative weight of the HOMO (or HOMO-1 and so on) coefficients of the atoms attached to the asymmetric carbon C1 and comparison of these values. For carbon, oxygen and nitrogen atoms, the sum of the absolute values of the molecular coefficients 2s, 2px, 2py, 2pz has been calculated and for hydrogen, only the absolute value of the molecular coefficient 1s has been considered1. In the relative ranking of these values, if the decreasing order obtained is clockwise, the contribution of the MO is dextrarotatory and levorotatory in the other case. To illustrate this hypothesis, the geometry of various molecules having one or two stereogenic centers was optimized at the RHF/6-31G(d, p) level of theory (Gaussian 98 program, revision A.11.4) [13].

Table 1 summarizes results concerning usual compounds 16. In each case, the sign of the optical rotatory power was obtained by calculation with a very good prediction and matched perfectly with the measured one.

Table 1

Calculated total energies, MO energies, sum of the MO coefficients, atom decreasing order and predicted sign of the optical rotatory power for compounds 16

CompoundAbs.[α]DEnergyMOMOMOMOMOMOAtomPred.
conf.(au)num. aenergy (au) bcoeff. ccoeff. ccoeff. ccoeff. cdecreasingsign d
2345order
1 S+13–232.1766621–0.433520.480840.203400.758660.17654O4 > C2 > C3 > H5(+)
20–0.455550.294820.549570.362460.11048C3 > O4 > C2 > H5(+)
19–0.482000.060960.486180.177210.02920C3 > O4 > C2 > H5(+)
18–0.495540.163500.616130.357270.00567C3 > O4 > C2 > H5(+)
17–0.511870.421700.131860.655300.09796O4 > C2 > C3 > H5(+)
2 R–21.9–267.9973021–0.427790.516710.195750.437970.07444C2 > O4 > C3 > H5(–)
20–0.467480.486280.257260.445340.02615C2 > O4 > C3 > H5(–)
19–0.492310.189550.521830.653520.17218O4 > C3 > C2 > H5(–)
18–0.515460.251990.316970.547530.11974O4 > C3 > C2 > H5(–)
3 R+13.9–191.9244016–0.434500.553900.183920.615610.09316O4 > C2 > C3 > H5(+)
15–0.444200.248890.279000.737870.09004O4 > C3 > C2 > H5(–)
14–0.521530.331540.356770.367180.18203O4 ~ C3
13–0.528840.461210.443340.513360.05056O4 > C2 > C3 > H5(+)
4 R–18–248.1719221–0.399850.329480.075900.317000.06957C2 > O4 > C3 > H5(–)
20–0.433140.288900.222530.606070.19119O4 > C2 > C3 > H5(+)
19–0.474740.400640.422380.570760.06103O4 > C3 > C2 > H5(–)
5 R–22–248.16935721–0.400070.305360.372150.723950.01560N4 > C3 > C2 > H5(–)
20–0.432750.303420.130490.334720.08459N4 > C2 > C3 > H5(+)
19–0.476460.522480.224500.221600.00147C3 ~ N4
18–0.501620.179870.377040.280990.22764C3 > N4 > H5 > C2(–)
6 R+12–341.68475224–0.431510.301080.232770.203850.07892C2>C3>O4>H5(+)
23–0.457520.052620.423600.624220.16245O4 > C3 > H5 > C2(+)
22–0.478950.061380.382420.247030.02184C3 > O4 > C2 > H5(+)

a MO number beginning by the HOMO, HOMO-1, and so forth.

b Energy of the occupied MO.

c Sum of the MO coefficients (absolute values) (for C, O, N: 2s, 2px, 2py, 2pz; for H: 1s) at the atom 2–5.

d Predicted sign of the optical rotatory power.

With carboxylic derivatives 711 (Table 2), the prediction are quite fair but in contradiction for the lactic acid and the alanine methyl ester. Calculations shown that the coefficients of the MO are greatly modified by the conformation of the molecule and the atom order can be reversed.

Table 2

Calculated total energies, MO energies, sum of the MO coefficients, atom decreasing order and predicted sign of the optical rotatory power for compounds 711

CompoundAbs.[α]DEnergyMOMOMOMOMOMOAtomPred.
conf.(au)num. aenergy (au) bcoeff. ccoeff. ccoeff. ccoeff. cdecreasingsign d
2345order
7 R+8.5–380.7520728–0.447870.087450.347720.686890.17651O4 > C3 > H5 > C2(+)
27–0.459120.336590.285630.268640.03645C2 > C3 > O4 > H5(+)
26–0.480360.117630.083290.043040.01530C2 > C3 > O4 > H5(+)
25–0.521320.405530.233090.484080.0664O4 > C2 > C3 > H5(+)
8 R–3.9–341.7272224–0.453780.138640.324530.645800.18401O4 > C3 > H5 > C5(+)
23–0.468360.278010.331430.321680.00823C3 ~ O4
22–0.506880.234780.066320.112510.01433C2 > O4 > C3 > H5(–)
21–0.535330.389790.326100.519560.06579O4 > C2 > C3 > H5(+)
9 R+13.5–341.1721824–0.208700.252960.132890.214380.04723C2 > O4 > C3 > H5(–)
23–0.213510.023640.065760.121660.02858O4 > C3 > H5 > C2(+)
22–0.231710.112450.073240.129940.03777O4 > C2 > C3 > H5(+)
10 R–7.0–361.2890628–0.623410.097390.068390.035120.01383C2 > C3 > N4 > H5(+)
27–0.625310.208580.193600.037040.05872C2 > C3 > H5 > N4(–)
26–0.675750.261320.122040.034050.02782C2 > C3 > N4 > H5(+)
25–0.697360.270360.355350.046850.12717C3 > C2 > H5 > N4(+)
11 R+1.7–360.9225428–0.400070.390140.181360.865940.06312N4 > C2 > C3 > H5(+)
27–0.454670.103870.178980.398100.05408N4 > C3 > C2 > H5(–)
26–0.467410.121430.082370.065730.00079C2 > C3 > N4 > H5(–)
25–0.502050.111130.526030.179050.18777C3 > H5 > N4 > C2(+)

a MO number.

b Energy of the occupied MO beginning by the HOMO, HOMO-1, and so forth.

c Sum of the MO coefficients (absolute values) (for C, O, N: 2s, 2px, 2py, 2pz; for H: 1s) at the atom 2–5.

d Predicted sign of the optical rotatory power.

Compounds bearing a phenyl group as substituent are well described by the atom order resulting from the calculation of the MO coefficients. For diol 15, the relatively small rotation can be the result of the opposed prediction from the MO coefficients of various conformations (Table 3).

Table 3

Calculated total energies, MO energies, sum of the MO coefficients, atom decreasing order and predicted sign of the optical rotatory power for compounds 1219

CompoundAbs.[α]DEnergyMOMOMOMOMOMOAtomPred.
conf.(au)num. aenergy (au) bcoeff. ccoeff. ccoeff. ccoeff. cdecreasingsign d
2345order
12 S–45–383.6578033–0.332720.19280.39970.07450.0538C3 > C2 > O4 > H5(–)
32–0.339460.04280.02140.03300.0096C2 > O4 > C3 > H5(–)
31–0.445220.37150.07960.61970.1699O4 > C2 > H5 > C3(–)
30–0.474270.32600.42300.35360.0972C3 > C2 > O4 > H5(–)
13 S–40–363.8284033–0.327830.140710.351530.219580.02734C3 > N4 > C2 > H5
32–0.338330.035640.048850.035830.00187C2 ~ N4(+)
31–0.394050.162470.340200.727390.07314N4 > C3 > C2 > H5(–)
30–0.480590.431230.284440.189360.14991C2 > C3 > N4 > H5(+)
29–0.487940.281340.348580.172190.08025C3 > C2 > N4 > H5(–)
14 S+38.7–422.7006437–0.333170.053650.145550.055060.00954C2 ~ C4
36–0.341920.016330.014140.032420.01037O4 > C2 > C3 > H5(+)
35–0.436020.135470.406240.728840.17495O4 > C3 > H5 > C2(+)
34–0.467630.367640.295590.379600.12108O4 > C2 > C3 > H5(+)
15 R–4.2–497.5576141–0.335270.169120.347940.173320.15828O4 ~ C2
40–0.340960.029660.002050.021430.02286O4 ~ C5
39–0.435860.351400.196950.183040.10774C2 > C3 > O4 > C5(–)
38–0.450740.178310.333120.604630.43986O4 > C5 > C3 > C2(+)
37–0.486070.357750.200360.435730.27865O4 > C2 > C5 > C3(+)
16 S+25.5–461.7337941–0.324010.066950.136600.066930.00256C2 = C4
40–0.332950.020010.015060.033990.01001O4 > C2 > C3 > H5(+)
39–0.432230.418640.374360.506780.01450O4 > C2 > C3 > H5(+)
38–0.463850.329240.321930.349830.17951O4 > C2 > C3 > H5(+)
17 R–24–382.4464532–0.330120.249130.332600.186880.04658C3 > C2 > O4 > H5(–)
31–0.340690.024030.005050.020210.00368C2 > O4 > C3 > H5(–)
30–0.454160.232380.264070.914860.10815O4 > C3 > C2 > H5(–)
29–0.457990.459710.117140.575040.04603O4 > C2 > C3 > H5(+)
18 R–39–458.5189137–0.330160.194380.435620.088360.05702C3 > C2 > O4 > H5(–)
36–0.335470.052140.035920.034340.01191C2 > C3 > O4 > H5(+)
35–0.443680.406040.086850.588470.16359O4 > C2 > H5 > C3(–)
34–0.462960.318740.132930.190280.0635C2 > O4 > C3 > H5(–)
19 R+11.1–459.3296239–0.339350.082590.140490.060670.01338C3 > C2 > O4 > H5(–)
38–0.346940.020610.012390.033710.01026O4 > C2 > C3 > H5(+)
37–0.391340.543680.220840.170860.10374C2 > C3 > O4 > H5(+)
36–0.400940.608210.0099720.158040.03227C2 > O4 > H5 > C3(+)

a MO number beginning by the HOMO, HOMO-1, and so forth.

b Energy of the occupied MO.

c Sum of the MO coefficients (absolute values) (for C, O, N: 2s, 2px, 2py, 2pz; for H: 1s) at the atom 2–5.

d Predicted sign of the optical rotatory power.

Interesting results are observed with cyclohexane derivatives, in particular with the two compounds 21 and 22 with a twofold (C2) axis (Table 4).

Table 4

Calculated total energies, MO energies, sum of the MO coefficients, atom decreasing order and predicted sign of the optical rotatory power for compounds 2022

CompoundAbs.[α]DEnergyMOMOMOMOMOMOAtomPred.
conf.(au)num. aenergy (au) bcoeff. ccoeff. ccoeff. ccoeff. cdecreasingsign d
2345order
20 S–45.6–346.9663431–0.391760.356230.154390.117600.04393C2 > C3 > C4 > H5(–)
30–0.454870.191470.450460.270320.03982C3 > C4 > C2 > H5(–)
29–0.471230.112670.439070.313810.14363C3 > C4 > H5 > C2(+)
21 SS+42–383.9539332–0.412760.264370.443080.420990.05827C3 > O4 > C2 > H5(+)
31–0.448430.215240.534600.249560.00933C3 > O4 > C2 > H5(+)
30–0.458620.332980.194650.441690.08852O4 > C2 > C3 > H5(+)
22 RR+12.5–344.2927532–0.367770.264300.218720.444030.00526N4 > C2 > C3 > H5(+)
31–0.386900.214670.302850.685860.04486N4 > C3 > C2 > H5(–)
30–0.432870.399210.345020.199480.05090C2 > C3 > N4 > H5(+)

a MO number beginning by the HOMO, HOMO-1, and so forth.

b Energy of the occupied MO.

c Sum of the MO coefficients (absolute values) (for C, O, N: 2s, 2px, 2py, 2pz; for H: 1s) at the atom 2–5.

d Predicted sign of the optical rotatory power.

Further studies with other compounds and various conformations of the present compounds are ongoing and will be reported in due course.

Acknowledgments

I wish to thank Drs C. Ollivier, J.-L. Parrain and M. Rajzmann for their aid during the course of this work.

1 It is more correct to compare the sum of the squares of the coefficients but, as we are only interested by the comparative ranking of these values, the result should be the same.


Bibliographie

[1] E.L. Eliel Stereochemistry of Carbon Compounds, McGraw-Hill, New York, 1962

[2] E.L. Eliel; S.H. Wilen Stereochemistry of Organic Compounds, Wiley, New York, 1994

[3] A.D. Buckingham; P.J. Stiles Acc. Chem. Res., 7 (1974), p. 258

[4] L. Rosenfeld Z. Phys., 52 (1929), p. 161

[5] M.A. Osipov; B.T. Pickup; D.A. Dunmur Mol. Phys., 84 (1995), p. 1193

[6] W.R. Salzman Chem. Phys. Lett., 134 (1987), p. 622

[7] K.R. Sundberg J. Chem. Phys., 68 (1978), pp. 5271-5276

[8] H. Eyring; J. Walter; G.E. Kimball Quantum Chemistry, Wiley, New York, 1963, p. 342

[9] J.H. Brewster J. Am. Chem. Soc., 81 (1959) (5475; 5483; 5493)

[10] J.H. Brewster, Topics in Stereochemistry, Interscience Publishers, New York Vol. 2, 1967, p. 1.

[11] A. Julg Tetrahedron, 12 (1961), p. 146

[12] A. Rauk J. Am. Chem. Soc., 103 (1981), p. 1023

[13] M.J. Frisch; G.W. Trucks; H.B. Schlegel; G.E. Scuseria; M.A. Robb; J.R. Cheeseman; V.G. Zakrzewski; J.A. Montgomery; R.E. Stratmann; J.C. Burant; S. Dapprich; J.M. Millam; A.D. Daniels; K.N. Kudin; M.C. Strain; O. Farkas; J. Tomasi; V. Barone; M. Cossi; R. Cammi; B. Mennucci; C. Pomelli; C. Adamo; S. Clifford; J. Ochterski; G.A. Petersson; P.Y. Ayala; Q. Cui; K. Morokuma; N. Rega; P. Salvador; J.J. Dannenberg; D.K. Malick; A.D. Rabuck; K. Raghavachari; J.B. Foresman; J. Cioslowski; J.V. Ortiz; A.G. Baboul; B.B. Stefanov; G. Liu; A. Liashenko; P. Piskorz; I. Komaromi; R. Gomperts; R.L. Martin; D.J. Fox; T. Keith; M.A. Al-Laham; C.Y. Peng; A. Nanayakkara; M. Challacombe; P.M.W. Gill; B. Johnson; W. Chen; M.W. Wong; J.L. Andres; C. Gonzalez; M. Head-Gordon; E.S. Replogle; J.A. Pople, Gaussian, Inc, Pittsburgh, PA, USA, 1998


Commentaires - Politique