Plan
Comptes Rendus

Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance
Comptes Rendus. Chimie, Conversion photochimique et stockage de l'énergie solaire, Volume 9 (2006) no. 5-6, pp. 645-651.

Résumés

Internal resistance in dye-sensitized nanocrystalline TiO2 solar cells (DSCs) was investigated using electrochemical impedance spectroscopy measurements. Four resistance elements were observed in the impedance spectra. These resistance elements could be explained by variations of cell parameters and the dependence of resistance elements on the applied bias voltage. It is found that the resistance element related to charge transport at the TiO2/dye/electrolyte interface displays behavior like that of a diode, and the series resistance elements largely correspond to the sum of the other resistance elements. To minimize the internal resistance in DSCs, the influence of cell parameters such as sheet resistance of TCO glass substrate, roughness factor of platinum counter electrode and cell thickness, on the impedance spectra were studied. An equivalent circuit for DSCs is proposed based on these results. The combined efforts have led to fabricate an efficient DSC sensitized with black dye. A short circuit photocurrent density of 20.1 mA/cm2, an open-circuit voltage of 0.71 V, a fill factor of 0.71 and an overall conversion efficiency of 10.1% was obtained when measured under standard AM 1.5 sunlight. .

La résistance interne des piles solaires nanocristallines au TiO2 sensibilisées par un colorant (DSC) a été étudiée par spectroscopie d’impédance électrochimique. On a observé quatre éléments résistifs dans les spectres d’impédance. Ces résistances peuvent s’expliquer par des variations des paramètres de cellule et dépendent de la tension de polarisation appliquée. On constate que la résistance liée au transfert de charge à l’interface TiO2/colorant/électrolyte se comporte comme une diode, et les résistances en série correspondent en grande partie à la somme des autres résistances. Pour minimiser la résistance interne dans les piles solaires nanocristallines à colorant, l’influence sur les spectres d’impédance de paramètres de cellule tels que la résistance de « feuille » du substrat de verre d’oxydes transparents conducteurs, le facteur de rugosité de la contre-électrode de platine et l’épaisseur de la cellule a été étudiée. On propose un circuit équivalent pour les piles solaires nanocristallines à colorant à partir de ces résultats. Des efforts conjoints ont conduit à la fabrication d’une pile solaire nanocristalline efficace sensibilisée par un colorant noir. Une densité de photocourant de court-circuit de 20,1 mA/cm2, une tension en circuit ouvert de 0,71 V, un fill factor de 0,71 et une efficacité globale de conversion de 10,1 % ont été obtenues sous un éclairage standard de type AM 1.5 sunlight. .

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2005.02.046
Keywords: Equivalent circuit, Impedance spectroscopy, TiO2, Ru(II) complexes, Dye-sensitized solar cell
Mots-clés : Circuit équivalent, Spectroscopie d'impédance, TiO2, Complexes du Ru(II), Pile solaire sensibilisée par un colorant

Liyuan Han 1 ; Naoki Koide 1 ; Yasuo Chiba 1 ; Ashraful Islam 1 ; Takehito Mitate 1

1 Ecological Technology Development Center, Sharp Corporation, 282-1 Hajikami, Katsuragi, Nara 639-2198, Japan
@article{CRCHIM_2006__9_5-6_645_0,
     author = {Liyuan Han and Naoki Koide and Yasuo Chiba and Ashraful Islam and Takehito Mitate},
     title = {Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance},
     journal = {Comptes Rendus. Chimie},
     pages = {645--651},
     publisher = {Elsevier},
     volume = {9},
     number = {5-6},
     year = {2006},
     doi = {10.1016/j.crci.2005.02.046},
     language = {en},
}
TY  - JOUR
AU  - Liyuan Han
AU  - Naoki Koide
AU  - Yasuo Chiba
AU  - Ashraful Islam
AU  - Takehito Mitate
TI  - Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance
JO  - Comptes Rendus. Chimie
PY  - 2006
SP  - 645
EP  - 651
VL  - 9
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crci.2005.02.046
LA  - en
ID  - CRCHIM_2006__9_5-6_645_0
ER  - 
%0 Journal Article
%A Liyuan Han
%A Naoki Koide
%A Yasuo Chiba
%A Ashraful Islam
%A Takehito Mitate
%T Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance
%J Comptes Rendus. Chimie
%D 2006
%P 645-651
%V 9
%N 5-6
%I Elsevier
%R 10.1016/j.crci.2005.02.046
%G en
%F CRCHIM_2006__9_5-6_645_0
Liyuan Han; Naoki Koide; Yasuo Chiba; Ashraful Islam; Takehito Mitate. Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus. Chimie, Conversion photochimique et stockage de l'énergie solaire, Volume 9 (2006) no. 5-6, pp. 645-651. doi : 10.1016/j.crci.2005.02.046. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2005.02.046/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

An attractive and cheaper approach for the conversion of solar light into electrical energy has been to utilize large-band-gap oxide semiconductors such as TiO2 to absorb solar light [1]. Dye sensitization of large-band-gap oxide semiconductors has been investigated for many years [2–4]. In the 1990s a major photoelectrochemical solar cell development was obtained with the introduction of fractal thin film dye-sensitized solar cells devised by O'Regan and Grätzel [5]. In this solar cell, a monolayer of dye is attached to the surface of nanocrystalline TiO2 film. Photoexcitation of the dye results in the injection of an electron into the conduction band of the oxide. The original state of the dye is subsequently restored by electron donation from a redox system, such as the iodide/triiodide couple. The complexity of the TiO2 electrode with its large surface area has thwarted a detailed understanding of DSC mechanisms. This is the main reason why the energy conversion efficiency of DSCs has scarcely improved during the last decade.

On the other hand, the mechanism of conventional solar cells is well understood by way of equivalent circuits, which are considered to be useful tools to analyze cell devices and improve cell performance [6]. Therefore, it is necessary to obtain DSC equivalent circuits to accelerate the development of practical DSC-based photovoltaic modules. Recently, electrochemical impedance spectroscopy (EIS) has been used to analyze internal resistance in DSCs, and at least three internal resistances have been found [7–11]. However, as a result of the difficulty of fabricating stable and high-performance DSCs, equivalent circuit models of DSCs have not yet been established to the extent of those for conventional solar cells.

In a previous paper, we investigated the internal resistance of dye-sensitized solar cells through electrochemical impedance spectroscopy measurement as a means of researching DSC mechanisms, and constructed the equivalent circuit of DSCs based on analysis of results of the EIS [12]. In this paper, we examine in detail the internal resistances of a DSC using electrochemical impedance spectroscopy. The dependence of each internal resistance element on applied bias voltage is characterized and an equivalent DSC circuit is proposed. Efficient DSCs sensitized with bis(tetrabutylammonium)cis-bis(dithiocyanato)bis(4,4′-dicarboxylic acid-2,2′-bipyridine)rutherium(II) (N719 dye) and tris(tetrabutylammonium)tris(dithiocyanato)(4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine) rutherium(II) (black dye) are constructed by optimizing the internal resistances of DSCs.

2 Experimental section

Porous TiO2 electrodes of about 12- and 30-μm-thick films on a transparent conducting oxide (TCO) were prepared using a published procedure [13]. The TCO with different sheet resistance was prepared by controlling the thickness of TCO in the deposition process. The heated electrodes were treated with 40 mM TiCl4 aqueous solution at 70 °C for 20 min in order to make a good mechanical contact between the TiO2 particles and also conducting glass matrix. After sintering at 500 °C and cooling to about 80 °C, the TiO2 electrodes were dye-coated by immersing them into dye solutions at room temperature for overnight. An ethanolic solution of 0.4 mM cis-bis(dithiocyanato) bis(4,4′-dicarboxylic acid-2,2′-bipyridine)rutherium(II) (N3 dye) was used for dye adsorption. Dye solutions of 0.4 mM bis(tetrabutylammonium)cis-bis(dithiocyanato)bis(4,4′-dicarboxylic acid-2,2′-bipyridine)rutherium(II) (N719 dye) and 0.2 mM tris(tetrabutylammonium)tris(dithiocyanato)(4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine) rutherium(II) (black dye) were prepared in t-butanol/acetonitrile (1:1). The presence of 20 mM deoxycholic acid, as a co-adsorbent, in the dye solution of black dye is found to be necessary to prevent aggregation of the dye molecules on TiO2 film. Platinum-coated conducting glass was used as a counter electrode. The roughness factor (RF) of the platinum counter electrodes is defined as the ratio of an actual surface and effective surface to the projected area of the electrodes. The Roughness factor of platinum counter electrodes was measured by an atomic force microscopy (AFM) (Digital Instruments, Nanoscope IIIa), and the projected area was measured using optical microscope. The composition of electrolyte solution was 1,2-dimethyl-3-propyl imidazolium iodide (0.6 M), lithium iodide (0.1 M), iodine (0.05 M) and 4-tert-butylpyridine (0.5 M) in acetonitrile. Photoelectrochemical properties were measured using a digital source meter (Keithley Instruments Inc., Model 2400) under air mass (AM) 1.5 simulated solar illumination at 100 mW/cm2 [14]. The electrochemical impedance spectra were measured with an impedance analyzer (Solartron Analytical, 1255B) connected with a potentiostat (Solartron Analytical, 1287) under illumination at 100 mW/cm2 using a solar simulator (Wacom, WXS-155S-10). EIS spectra were recorded over a frequency range of 10−2–106 Hz at 25 °C. The applied bias voltage and ac amplitude were set at open-circuit voltage (Voc) of the DSCs and 10 mV, respectively. The electrical impedance spectra were characterized using Z-View software (Solartron Analytical).

3 Results and discussion

Fig. 1 shows an electrochemical impedance spectrum of a DSC using N3 dye. Three semicircles are observed in the measured frequency range of 20−1 MHz. This suggests there are at least four impedances elements in the DSCs. We define these impedances between 100 and 1 kHz as Z1, 1 kHz to 1 Hz as Z2, 1 Hz to 20 mHz as Z3. The internal resistances of R1, R2, and R3 describe the real parts of Z1, Z2 and Z3, respectively. Because impedance over 1 MHz could not be measured due to instrumental limitations, the resistance element in this frequency region is defined as Rh. The values of R1, R2, R3 and Rh are 0.9, 2.0, 0.6 and 0.8 Ω, respectively. The total internal resistance is 4.3 Ω.

Fig. 1

Electrochemical impedance spectrum of a DSC consisting of a TCO∣TiO2–N3 dye∣electrolyte with I/I3 redox couple∣Pt electrode. Z1, Z2 and Z3 describe as impedances. R1, R2 , R3 and Rh are internal resistance elements. The values of R1, R2 , R3 and Rh are 0.9, 2.0, 0.6 and 0.8 Ω, respectively.

In order to elucidate origins of the semicircles, a variety of different DSCs were constructed by variation of experimental parameters such as the sheet resistance of TCO glass substrate, the roughness factor of platinum counter electrode and cell thickness, and their EIS spectra were studied.

Fig. 2 shows a dependence of Rh on the sheet resistance of TCO glass substrate. It is observed that impedance spectrum is shifted towards higher value of Z′ with increasing the sheet resistance of TCO. The value of Rh is directly proportional to the sheet resistance of TCO. Therefore, it is considered that the resistance element Rh in the high-frequency range > 106 Hz is mainly due to the sheet resistance of TCO.

Fig. 2

Dependence of Rh of DSCs on the sheet resistance of TCO. Values of Rh are estimated from electrochemical impedance spectra of DSCs consisting of a TCO∣TiO2–N3 dye∣electrolyte with I/I3 redox couple∣Pt electrode, where sheet resistance of TCO is varied.

Fig. 3 shows the dependence of R1 on the roughness factor of Pt counter electrodes. Pt counter electrodes having different roughness factor were prepared for this measurements. It is found that R1 decreases with increasing the roughness factor of counter electrode. This means that R1 is related to the carrier transport resistance at the surface of Pt counter electrode.

Fig. 3

Dependence of R1 of DSCs on the roughness factor of Pt counter electrode. R1 values are estimated from electrochemical impedance spectra of DSCs consisting of TCO∣TiO2–N3 dye∣electrolytes with I/I3 redox couple∣Pt electrode; using Pt counter electrodes of various roughness factors.

Fig. 4 shows the dependence of R3 on the distance between TCO and Pt counter electrode. In this study, a cell type of Pt/Electrolyte/Pt was used, and spacers with different thickness were used between TCO and Pt counter electrode. It is observed that R3 is proportional to the distance between TCO and Pt counter electrode. Therefore, it is considered that the resistance element R3 is related to the diffusion of iodide and triiodide within the electrolyte.

Fig. 4

Dependence of R3 of DSCs on the cell thickness. R3 values are estimated from electrochemical impedance spectra of DSCs consisting of Pt electrode∣electrolytes with I/I3 redox couple∣Pt electrode, where spacers with different thickness were used between the two Pt electrodes to change the cell gap.

On the other hand, the semicircle Z2 is not appeared in the EIS spectrum of the Pt/electrolyte/Pt cell which does not include TiO2 and dye. Therefore, the semicircle Z2 is assigned to carrier transport resistance in TiO2/dye/electrodes interface. Based on the above experimental results, the semicircles Z1, Z2 and Z3 are attributed to impedance related to charge-transfer processes occurring at the Pt counter electrode (Z1), at the TiO2/dye/electrolyte interface (Z2), and to iodide and triiodide diffusion within the electrolyte (Z3), respectively. Among them, the origins of Z1 and Z3 are similar to those reported by Kern et al. [7]. The capacitance elements of Z1 (defined as C1) and Z2 (defined as C2) are estimated to be 2–4 mF and 0.3–70 mF, respectively. The resistance elements of Rh, R1, R2 and R3 are estimated to be several ohms, as shown in Fig. 1.

In general, a solar cell must have a diode-like element, otherwise the power output could not be obtained. However, it is difficult to determine which impedance element shows diode-like characteristics upon EIS measurements under Voc conditions. The ideal current–voltage (IV) characteristics of a diode are given by

I=I0{exp (q Vn k T)1}(1)
where, q, V, n, k and T are elementary charge, voltage, ideality factor, Boltzmann constant and temperature, respectively [6]. The resistance R is then described as
1Rexp (q Vn k T)(2)
since q, n, k and T are constant, 1/R should be proportional to the exponential function of V.

Therefore, the dependences of Rh, R1, R2 and R3 on the applied bias voltage at around Voc were investigated. It is found that only R2 is changed with the applied bias voltage, as shown in Fig. 5, while the others are almost unchanged with the applied bias voltage. The dependence of 1/R2 on the applied bias voltage is also shown in inset of Fig. 5. 1/R2 increases directly proportional to the applied bias voltage, which is consistent with Eq. (2). This result suggests that R2 shows the resistance of the diode element in the DSCs, and is different from that reported by Kern et al., who describe Z2 as reflecting the properties of the photoinjected electrons within the TiO2 [7].

Fig. 5

Relationship between R2 and the applied bias voltage. Dependence of resistances 1/R2 on the applied bias voltage. Measurement was carried out under Voc by varying illumination conditions.

Curves (A) and (B) in Fig. 6a show the IV characteristics of a DSC under conditions of darkness and illumination, respectively. Under illumination, the prepared DSC shows a short circuit photocurrent density (Jsc) of 13.6 mA/cm2, open circuit voltage (Voc) of 0.76 V, and a fill factor (FF) of 0.73 yielding conversion efficiency of 7.5%. Curve (C) is calculated by adding Jsc to curve (A). Curve (C) will expect to equate to curve (B) in case of no series resistance (defined as Rs) being present in the DSC under illumination. However, curve (C) does not coincide with curve (B) as shown in Fig. 6a. Taking into account Rs of 2.5 Ω, which is measured from IV curve and roughly corresponds to the sum of Rh, R1 and R3 from Fig. 1, the observed shift of curve (C) toward curve (D) can be explained as shown in Fig. 6b. Therefore, Rh, R1 and R3 can be considered to be the series resistance.

Fig. 6

Current–voltage characteristics of a DSC: curves (A) and (B) are measured under conditions of darkness and illumination, respectively; curve (C) is estimated by the sum of curve (A) and Jsc; curve (D) is calculated by subtracting the voltage drop elements from curve (C). Conversion efficiency (curve (B)) under AM 1.5 is 7.5% (Jsc = 13.6 mA/cm2, Voc = 0.76 V and FF = 0.73).

As discussed above, the four impedance elements observed by EIS measurement can be classified as the impedance Z2, which displays a diode-like behavior, and the series impedance of Rh, Z1 and Z3. Therefore, we have proposed an equivalent circuit of DSC as shown in Fig. 7a. Furthermore, a shunt resistance (Rsh), which describes the recombination of the electron from TiO2 electrode to electrolyte, should be added to the equivalent circuit. Rsh cannot estimated from EIS because it is included in R2. However, it can be estimated to be 2 kΩ/cm2 from the IV curve in Fig. 6. The high value of Rsh indicates a slow back electron transfer rate from TiO2 to electrolytes in the TiO2/dye/electrolyte interface. A constant-current source in which electrons are generated by illumination is in parallel with Rsh. On the other hand, as solar cells generally operate under direct current conditions, the capacitances can be ignored. The series resistance Rs can then be described as

Rs=Rh+R1+R3(3)

Fig. 7

Equivalent circuits obtained from EIS and IV characteristics of DSCs. Z1, Z2, Z3 are the impedances in DSCs. Z2 is the impedance of a diode. The sum of R1, R3 and Rh largely corresponds to the series resistance of DSCs. A constant-current source is in parallel with Rsh.

The equivalent circuit of DSCs as shown in Fig. 7b can thus be proposed, which is similar to that of a conventional solar cell. This suggests an abundance of experience obtained through the development of high-efficiency conventional solar cells [15,16] can be applied to DSCs.

In order to increase efficiency of DSCs, the internal resistance should be reduced. As mentioned before, the resistance element R1 decreases with increasing the roughness factor of the counter electrode. It is observed that both Jsc and FF are improved with increasing the roughness factor of counter electrode. To reduce the resistance elements, we have optimized the roughness factor of Pt counter electrode, cell thickness, electrolyte composition and dye uptake conditions of the DSCs. A double-layered TiO2 film contained of about 15-nm-sized TiO2 particles and a light scattering layer of about 15-nm-sized and 300-nm-sized TiO2 particles was also developed to increase the light absorption in the longer wavelength region.

Based on the above information, an efficient DSC is fabricated using N719 dye (Fig. 8), which shows a short circuit photocurrent density of 18.2 mA/cm2, an open-circuit voltage of 0.73 V, a fill factor of 0.73 and an overall conversion efficiency of 9.7% under AM 1.5 irradiation (100 mW/cm2).

Fig. 8

Photocurrent–voltage characteristics of a DSC sensitized with N719 dye. Conversion efficiency under AM 1.5 is 9.7% (Jsc = 18.22 mA/cm2, Voc = 0.73 V, and FF = 0.73). Electrolyte: 0.6 M 1-methyl-3-propyl imidazolium iodide (MPII), 0.1 M LiI, 0.03 M I2, 0.5 M tert-butylpyridine in acetonitrile; TiO2 film thickness: 30 μm. Cell area: 0.25 cm2.

The spectral response in the red and near-IR regions is higher in black dye than red dye, resulting in higher short circuit photocurrent. We have also constructed a nanocrystalline TiO2 photoelectrochemical cell sensitized with the black dye and antireflective coating. The current–voltage characteristics of this solar cell are shown in Fig. 9. A short circuit photocurrent density of 20.1 mA/cm2, an open-circuit voltage of 0.71 V, a fill factor of 0.71 and an overall conversion efficiency of 10.1% is obtained using a metal mask under standard AM 1.5 sunlight.

Fig. 9

Photocurrent–voltage characteristics of a DSC sensitized with black dye. The results were obtained at 25 °C with an area of 0.2317 cm2 under standard AM 1.5 sun light using a metal mask and antireflective coating. Scan mode from Jsc to Voc. Jsc = 20.1 mA/cm2, Voc = 0.71 V, and FF = 0.71 and the conversion efficiency = 10.1%. Electrolyte: 0.6 M 1-methyl-3-propyl imidazolium iodide (MPII), 0.1 M LiI, 0.03 M I2, 0.3 M tert-butylpyridine in acetonitrile; TiO2 film thickness: 30 μm.

Fig. 10 shows the electrochemical impedance spectrum of this efficient cell. It is found that the impedance spectrum consisted of three semicircles similar to the impedance spectrum shown in Fig. 1. This cell has R1 of 0.4 Ω, R3 of 0.7 Ω, and Rh of 0.7 Ω. The total series resistance of the cell was 1.8 Ω, which suggests that the internal resistance value was much improved after optimization of the cell efficiency (Fig. 10). Especially, the shrinkage of the semicircle (Z1) in the frequency regions 103–105 Hz is significant. This suggests that the observed high performance in DSCs sensitized with black dye is attributed to not only due to enhancement of spectral response in the red and near-IR regions but also due to decrease of internal cell resistance.

Fig. 10

Electrochemical impedance spectrum of a DSC consisting of TCO∣TiO2–black dye∣electrolytes with I/I3 redox couple∣Pt electrode.

The three semicircular shapes are assigned to impedances related to charge transport at the Pt counter electrode (Z1) in the high-frequency region, at the TiO2/dye/electrolyte interface (Z2) in the middle-frequency region, and to ionic diffusion within the electrolyte (Z3) in the low-frequency region, respectively. R1, R2 and R3 are described as the real parts of Z1, Z2 and Z3, respectively. Rh is defined as a resistance in the high-frequency range over 106 Hz. Masquer

The three semicircular shapes are assigned to impedances related to charge transport at the Pt counter electrode (Z1) in the high-frequency region, at the TiO2/dye/electrolyte interface (Z2) in the middle-frequency region, and to ionic diffusion within the electrolyte ... Lire la suite

4 Conclusions

Four resistance elements were observed in the electrochemical impedance spectra of DSCs. According to the dependence of the internal resistance elements of DSCs on the applied bias voltage, the resistance element (R2) related to charge transport at the TiO2/dye/electrolyte interface is considered equivalent to the resistance of a diode. The sum of the sheet resistance of TCO (Rh), the carrier transport resistance (R1) at the surface of Pt counter electrode and the resistance element (R3) related to the Nernstian diffusion within the electrolyte agrees with the series resistance (Rs) of DSCs. Accordingly, the equivalent electrical circuit proposed is composed of a diode (R2), a series resistance (Rs), a shunt resistance (Rsh) and a constant-current source, similar to that of a conventional solar cell. An efficient DSC sensitized with black dye is measured. A short-circuit photocurrent density of 20.1 mA/cm2, an open-circuit voltage of 0.71 V, a fill factor of 0.71 and an overall conversion efficiency of 10.1% was obtained under standard AM 1.5 sun light. This suggests that it is also important to decrease the internal resistance of DSCs to obtain high efficiency, although enhancement of spectral response range to near-IR regions is important.

Acknowledgements

We acknowledge financial support of this work by the New Energy and Industrial Technology Development Organization (NEDO) in association with the Ministry of Economy, Trade and Industry of Japan.


Bibliographie

[1] S.R. Morrison Electrochemistry of Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980 (and references therein)

[2] H. Meier J. Phys. Chem., 69 (1965), p. 724

[3] H. Tsubomura; M. Matsumura; Y. Nomura; T. Amamiya Nature, 261 (1976), p. 402

[4] J. Moser; M. Grätzel J. Am. Chem. Soc., 106 (1984), p. 10769

[5] B. O’Regan; M. Grätzel Nature, 353 (1991), p. 737

[6] S.M. Sze Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981

[7] R. Kern; R. Sastrawan; J. Ferber; R. Stangl; J. Luther Electrochim. Acta, 47 (2002), p. 4213

[8] A. Hauch; A. Georg Electrochim. Acta, 46 (2001), p. 3457

[9] J. van de Lagemaat; N.-G. Park; A.J. Frank J. Phys. Chem. B, 104 (2000), p. 2044

[10] T.-S. Kang; K.-H. Chun; J.S. Hong; S.-H. Moon; K.-J. Kim J. Electrochem. Soc., 147 (2000), p. 3049

[11] M.C. Bernard; H. Cachet; P. Falaras; A. Hugot-Le Goff; M. Kalbac; I. Lukes; N.T. Oanh; T. Stergiopoulos; I. Arabatzis J. Electrochem. Soc., 150 (2003), p. E155

[12] L. Han; N. Koide; Y. Chiba; T. Mitate Appl. Phys. Lett., 84 (2004), p. 2433

[13] K. Hara; T. Horiguchi; T. Kinoshita; K. Sayama; H. Sugihara; H. Arakawa Sol. Energy Mater. Sol. Cells, 64 (2000), p. 115

[14] N. Koide; L. Han Rev. Sci. Instrum., 75 (2004), p. 2828

[15] J. Zhao; A. Wang; P.P. Altermatt; M.A. Green Proc. 26th IEEE Photovoltaic Specialists Conference, Anaheim, 1997 (p. 227)

[16] K. Nishioka; T. Yagi; T. Hatayama; Y. Uraoka; T. Fuyuki Proc. 17th European Photovoltaic Solar Energy Conference, Munich, 2001 (p. 1698)


Cité par

  • Gyeong G. Jeon; Da Seul Lee; Min Jun Choi; You‐Hyun Seo; Shujuan Huang; Jong H. Kim; Seong Sik Shin; Jincheol Kim Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer, EcoMat, Volume 6 (2024) no. 6 | DOI:10.1002/eom2.12455
  • Hay Mar Aung Kyaw; Mohamad Nizam Ishak; Ahmad Fauzi Mohd Noor; Go Kawamura; Atsunori Matsuda; Khatijah Aisha Yaacob CdSe nanostructured thin film by electrophoretic deposition for quantum dots sensitized solar cell, Nanotechnology, Volume 35 (2024) no. 23, p. 235402 | DOI:10.1088/1361-6528/ad2c5a
  • Roshan Sudarshana Rathnayaka Kananke Udubokke Rathnayakage; Thennakoon Mudiyanselage Wijendra Jayalath Bandara; Kapila Wijayaratne; Gamaralalage Rajanya Asoka Kumara; Landewatte Ajith de Silva; Kirthi Tennakone Fluorine-Doped Tin Oxide Thin Films with High Surface Conductance and Low Transparency for Boosting Performance in Dye-Sensitized Solar Cell Applications, ACS Applied Energy Materials, Volume 6 (2023) no. 16, p. 8336 | DOI:10.1021/acsaem.3c00058
  • Bo-Yu Han; Tzu-Ying Pan; Yi-Chen Wu; Jiann T. Lin; Hsien-Hsin Chou; Chun-Ting Li Steric Effect of N-Substituted Triphenylamine on Double-Anchored Phenothiazine Dye-Sensitized Solar Cells, ACS Applied Energy Materials, Volume 6 (2023) no. 7, p. 3778 | DOI:10.1021/acsaem.2c04022
  • Nattakan Kanjana; Wasan Maiaugree; Sarawut Tontapha; Paveena Laokul; Artit Chingsungnoen; Samuk Pimanpang; Inthira Chaiya; Sujittra Daengsakul; Vittaya Amornkitbamrung Effect of carbonization temperature on the electrocatalytic property and efficiency of dye-sensitized solar cells derived from corncob and sugarcane leaf agricultural residues, Biomass Conversion and Biorefinery, Volume 13 (2023) no. 9, p. 8361 | DOI:10.1007/s13399-021-02204-3
  • Andre Chambers; Steven Prawer; Arman Ahnood Photoelectrochemical Modelling of Semiconducting Electrodes for Neural Interfacing, Journal of The Electrochemical Society, Volume 170 (2023) no. 2, p. 026502 | DOI:10.1149/1945-7111/acb851
  • Yu-Chih Chiang; Chia-Rong Lee; Chia-Yi Huang Dye-sensitized solar cells containing photoelectrodes with TiO2 grids, Physica Scripta, Volume 98 (2023) no. 12, p. 125965 | DOI:10.1088/1402-4896/ad0d64
  • Md. Matiur Rahman; Shinya Kato; Tetsuo Soga Improved Photovoltaic Properties of Nano-Flake-Based Mesoporous Dip- SILAR Prepared BiOI Electrochemical Cell By Tuning Post-Annealing Treatment Time at 100°C, Current Nanomaterials, Volume 7 (2022) no. 1, p. 57 | DOI:10.2174/2405461506666210526150014
  • Meenakshamma Ambapuram; Gurulakshmi Maddala; Raghavender Mitty Metal nitrides and carbides as advanced counter electrodes for dye-sensitized solar cells, Oxide Free Nanomaterials for Energy Storage and Conversion Applications (2022), p. 219 | DOI:10.1016/b978-0-12-823936-0.00013-9
  • Manish Kumar Singla; Parag Nijhawan; Amandeep Singh Oberoi Parameter estimation of three diode solar PV cell using chaotic dragonfly algorithm, Soft Computing, Volume 26 (2022) no. 21, p. 11567 | DOI:10.1007/s00500-022-07425-w
  • M.A.K.L. Dissanayake; K. Umair; G.K.R. Senadeera; T. Jaseetharan; A.M.J.S. Weerasinghe; H.W.M.A.C. Wijayasinghe Plasmonic gold nanoparticle incorporated MgO-coated SnO2 photoanode for efficiency enhancement in dye-sensitized solar cells, Solar Energy, Volume 233 (2022), p. 363 | DOI:10.1016/j.solener.2022.01.038
  • R. MD Matiur; A. A. Abuelwafa; M. A. A. Noman; S. Kato; N. Kishi; T. Soga Electrochemical Impedance Spectroscopy Characterization of a Bismuth Oxyiodide (BiOI) Electrochemical Cell in Terms of Various Morphologies, Journal of Electronic Materials, Volume 50 (2021) no. 7, p. 4058 | DOI:10.1007/s11664-021-08917-5
  • Huai-Yi Chen; Horng-Show Koo; Yung-Lin Hsu; Chun-Hung Lu Performance analysis of dye-sensitized solar cells with various MgO-ZnO mixed photoanodes prepared by wet powder mixing and grinding, Journal of Modern Optics, Volume 68 (2021) no. 21, p. 1240 | DOI:10.1080/09500340.2021.1987538
  • Sahrul Saehana; Darsikin; Muslimin Physics characteristic of Lanea coromandelica (Houtt) Merr. based polymer and its potential application, Materials Today: Proceedings, Volume 44 (2021), p. 3327 | DOI:10.1016/j.matpr.2020.11.538
  • Ala Eddinne Touihri; Tarek Azizi; Rached Gharbi, 2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET) (2020), p. 235 | DOI:10.1109/ic_aset49463.2020.9318312
  • Priya Poulose; Dr. P. Sreejaya, 2020 International Conference on Power Electronics and Renewable Energy Applications (PEREA) (2020), p. 1 | DOI:10.1109/perea51218.2020.9339809
  • Mariia Becker; Maria-Sophie Bertrams; Edwin C. Constable; Catherine E. Housecroft How Reproducible are Electrochemical Impedance Spectroscopic Data for Dye-Sensitized Solar Cells?, Materials, Volume 13 (2020) no. 7, p. 1547 | DOI:10.3390/ma13071547
  • Huai-Yi Chen; Bo-Yao Huang; Horng-Show Koo; Mao-Ting Huang Characterization of dye-sensitized solar cells based on various CaCO3-doped ZnO photoanodes prepared using wet powder mixing and grinding, Optik, Volume 220 (2020), p. 164899 | DOI:10.1016/j.ijleo.2020.164899
  • D.A. Chalkias; D.D. Loizos; G.C. Papanicolaou Evaluation and prediction of dye-sensitized solar cells stability under different accelerated ageing conditions, Solar Energy, Volume 207 (2020), p. 841 | DOI:10.1016/j.solener.2020.06.115
  • Jung-Jie Huang; Sin-Liang Ou; Chun-Fa Hsu; Xiu-Qiu Shen The effect of boric acid concentration on the TiO2 compact layer by liquid-phase deposition for dye-sensitized solar cell, Applied Surface Science, Volume 477 (2019), p. 7 | DOI:10.1016/j.apsusc.2018.05.113
  • Ruri Agung Wahyuono; Guobin Jia; Jonathan Plentz; Andrea Dellith; Jan Dellith; Felix Herrmann‐Westendorf; Martin Seyring; Martin Presselt; Gudrun Andrä; Markus Rettenmayr; Benjamin Dietzek Self‐Assembled Graphene/MWCNT Bilayers as Platinum‐Free Counter Electrode in Dye‐Sensitized Solar Cells, ChemPhysChem, Volume 20 (2019) no. 24, p. 3336 | DOI:10.1002/cphc.201900714
  • Sha Liu; Jianqiang Liu; Tong Wang; Chenglei Wang; Zhongwei Ge; Jie Liu; Xiaotao Hao; Na Du; Hongdi Xiao Preparation and photovoltaic properties of dye-sensitized solar cells based on zinc titanium mixed metal oxides, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 568 (2019), p. 59 | DOI:10.1016/j.colsurfa.2019.02.005
  • Bakhytzhan Baptayev; Ainura Aukenova; Dias Mustazheb; Miras Kazaliyev; Mannix P. Balanay Pt-free counter electrode based on orange fiber-derived carbon embedded cobalt sulfide nanoflakes for dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, Volume 383 (2019), p. 111977 | DOI:10.1016/j.jphotochem.2019.111977
  • Ju Won Lim; Huan Wang; Chi Hun Choi; Li Na Quan; Kyungwha Chung; Won-Tae Park; Yong-Young Noh; Dong Ha Kim Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells: A simple and viable route for one-step processed CH3NH3PbI3, Journal of Power Sources, Volume 438 (2019), p. 226956 | DOI:10.1016/j.jpowsour.2019.226956
  • Jong-Won Yun; Farman Ullah; Se-Jeong Jang; Do Hui Kim; Tri Khoa Nguyen; Ki Yeon Ryu; Shinuk Cho; Joon I. Jang; Dooyong Lee; Sungkyun Park; Yong Soo Kim Ultrasonic-Assisted Spin-Coating: Improved Junction by Enhanced Permeation of a Coating Material within Nanostructures, ACS Applied Materials Interfaces, Volume 10 (2018) no. 23, p. 20025 | DOI:10.1021/acsami.8b04516
  • Wei-Chieh Chen; Min-Hsin Yeh; Lu-Yin Lin; R. Vittal; Kuo-Chuan Ho Double-Wall TiO2 Nanotubes for Dye-Sensitized Solar Cells: A Study of Growth Mechanism, ACS Sustainable Chemistry Engineering, Volume 6 (2018) no. 3, p. 3907 | DOI:10.1021/acssuschemeng.7b04250
  • Mariia Karpacheva; Catherine E Housecroft; Edwin C Constable Electrolyte tuning in dye-sensitized solar cells with N-heterocyclic carbene (NHC) iron(II) sensitizers, Beilstein Journal of Nanotechnology, Volume 9 (2018), p. 3069 | DOI:10.3762/bjnano.9.285
  • Saba Ashraf; Rui Su; Javeed Akhtar; Humaira M. Siddiqi; Ahmed El-Shafei Influence of brominated-TPA-stilbazole based ancillary ligand on the photocurrent and photovoltage in dye-sensitized solar cells, Dyes and Pigments, Volume 150 (2018), p. 347 | DOI:10.1016/j.dyepig.2017.12.035
  • D. Newell; R. Twohig; M. Duffy Effect of energy management circuitry on optimum energy harvesting source configuration for small form-factor autonomous sensing applications, Journal of Industrial Information Integration, Volume 11 (2018), p. 1 | DOI:10.1016/j.jii.2017.04.002
  • D. A. Chalkias; A. I. Laios; A. Petala; G. C. Papanicolaou Evaluation of the limiting factors affecting large-sized, flexible, platinum-free dye-sensitized solar cells performance: a combined experimental and equivalent circuit analysis, Journal of Materials Science: Materials in Electronics, Volume 29 (2018) no. 11, p. 9621 | DOI:10.1007/s10854-018-8998-z
  • Wei Wang; Huihui Yuan; Di Xu; Junjie Xie; Xinyu Chen; Yunlong He; Tao Zhang; Zongqi Chen; Yumei Zhang; Hujiang Shen Effects of counter electrode geometry on the power conversion efficiency of large-area dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, Volume 357 (2018), p. 85 | DOI:10.1016/j.jphotochem.2018.02.021
  • M B Rajendra Prasad; Parvin S Tamboli; Vikram P Bhalekar; Vishal Kadam; Johny T Abraham; Ch Rajesh; Habib M Pathan Impact of composition of polysulphide electrolyte on the photovoltaic performance in quantum dot sensitized solar cells, Materials Research Express, Volume 5 (2018) no. 6, p. 066208 | DOI:10.1088/2053-1591/aacdb5
  • Yow-An Leu; Min-Hsin Yeh; Lu-Yin Lin; Ta-Jen Li; Ling-Yu Chang; Sheng-Yen Shen; Yan-Sheng Li; Guan-Lin Chen; Wei-Hung Chiang; Jiang-Jen Lin; Kuo-Chuan Ho Thermally Stable Boron-Doped Multiwalled Carbon Nanotubes as a Pt-free Counter Electrode for Dye-Sensitized Solar Cells, ACS Sustainable Chemistry Engineering, Volume 5 (2017) no. 1, p. 537 | DOI:10.1021/acssuschemeng.6b01895
  • Diego Oliva; Mohamed Abd El Aziz; Aboul Ella Hassanien Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm, Applied Energy, Volume 200 (2017), p. 141 | DOI:10.1016/j.apenergy.2017.05.029
  • Jihuai Wu; Zhang Lan; Jianming Lin; Miaoliang Huang; Yunfang Huang; Leqing Fan; Genggeng Luo; Yu Lin; Yimin Xie; Yuelin Wei Counter electrodes in dye-sensitized solar cells, Chemical Society Reviews, Volume 46 (2017) no. 19, p. 5975 | DOI:10.1039/c6cs00752j
  • Jia-Wei Zheng; Li-E. Mo; Wang-Chao Chen; Ling Jiang; You-Cai Ding; Yong Ding; Zhao-Qian Li; Lin-Hua Hu; Song-Yuan Dai An Investigation of Surface States Energy Distribution and Band Edge Shifts in Solar Cells Based on TiO2 Submicrospheres and Nanoparticles, Electrochimica Acta, Volume 232 (2017), p. 38 | DOI:10.1016/j.electacta.2017.02.121
  • R. Ramamoorthy; K. Karthika; A. Maggie Dayana; G. Maheswari; V. Eswaramoorthi; N. Pavithra; S. Anandan; R. Victor Williams Reduced graphene oxide embedded titanium dioxide nanocomposite as novel photoanode material in natural dye-sensitized solar cells, Journal of Materials Science: Materials in Electronics, Volume 28 (2017) no. 18, p. 13678 | DOI:10.1007/s10854-017-7211-0
  • Shin Ae Song; Kyeong Youl Jung; Joo Young Oh; Young-Wook Chang; Kiyoung Kim; Sung Nam Lim; Yong-Cheol Jeong Enhancement of cell performance using nano polystyrene beads in photoelectrodes for dye-sensitized solar cells, Journal of the Taiwan Institute of Chemical Engineers, Volume 78 (2017), p. 195 | DOI:10.1016/j.jtice.2017.05.029
  • M.B. Rajendra Prasad; Vishal Kadam; Oh-Shim Joo; Habib M. Pathan Improving the photovoltaic parameters in Quantum dot sensitized solar cells through employment of chemically deposited compact titania blocking layer, Materials Chemistry and Physics, Volume 194 (2017), p. 165 | DOI:10.1016/j.matchemphys.2017.03.027
  • Changdong Chen; Fei Luo; Yuanju Li; Galhenage A. Sewvandi; Qi Feng Single-crystalline anatase TiO2 nanoleaf: Simple topochemical synthesis and light-scattering effect for dye-sensitized solar cells, Materials Letters, Volume 196 (2017), p. 50 | DOI:10.1016/j.matlet.2017.03.006
  • Jiawei Zheng; Li’e Mo; Wangchao Chen; Ling Jiang; Yong Ding; Zhaoqian Li; Linhua Hu; Songyuan Dai Surface states in TiO2 submicrosphere films and their effect on electron transport, Nano Research, Volume 10 (2017) no. 11, p. 3671 | DOI:10.1007/s12274-017-1577-4
  • Yuqiao Fu; Siu-pang Ng; Guangyu Qiu; Tak-fu Hung; Chi-man Lawrence Wu; Chun-sing Lee A redox-controlled electrolyte for plasmonic enhanced dye-sensitized solar cells, Nanoscale, Volume 9 (2017) no. 30, p. 10940 | DOI:10.1039/c7nr03506c
  • Mücella Özbay Karakuş; İrfan Koca; Orhan Er; Hidayet Çetin Dye ingredients and energy conversion efficiency at natural dye sensitized solar cells, Optical Materials, Volume 66 (2017), p. 552 | DOI:10.1016/j.optmat.2017.03.007
  • Hyeongseok Kim; Jeonghoo Jo; Ganghoo Lee; Myunghun Shin; Joo-Cheol Lee Design and analysis of a highly reliable large-area Z-type transparent module for dye-sensitized solar cells, Solar Energy, Volume 155 (2017), p. 585 | DOI:10.1016/j.solener.2017.06.058
  • Leo Furnell; Peter J. Holliman; Arthur Connell; Eurig W. Jones; Robert Hobbs; Christopher P. Kershaw; Rosie Anthony; Justin Searle; Trystan Watson; James McGettrick Digital imaging to simultaneously study device lifetimes of multiple dye-sensitized solar cells, Sustainable Energy Fuels, Volume 1 (2017) no. 2, p. 362 | DOI:10.1039/c7se00015d
  • Sahrul Saehana; Darsikin; Muslimin, Volume 1708 (2016), p. 030044 | DOI:10.1063/1.4941510
  • Sahrul Saehana; Darsikin; Muslimin, Volume 1725 (2016), p. 020073 | DOI:10.1063/1.4945527
  • F. M. Al-Marzouki; S. Abdalla; S. Al-Ameer Dye Sensitized Solar Cells with Low Cost Carbon Nanotubes Electrodes, Advances in Materials Science and Engineering, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/4928710
  • Jung-Jie Huang; Shih-Ping Chiu; Menq-Jion Wu; Chun-Fa Hsu Effect of titanium oxide compact layer in dye-sensitized solar cell prepared by liquid-phase deposition, Applied Physics A, Volume 122 (2016) no. 11 | DOI:10.1007/s00339-016-0492-y
  • Chau Thi Thanh Thuy; Joo Hei Jung; Suresh Thogiti; Woo-Sik Jung; Kwang-Soon Ahn; Jae Hong Kim Graphene coated alumina-modified polypyrrole composite films as an efficient Pt-free counter electrode for dye-sensitized solar cells, Electrochimica Acta, Volume 205 (2016), p. 170 | DOI:10.1016/j.electacta.2016.04.099
  • Mohsen Ameri; Feridoun Samavat; Ezeddin Mohajerani; Mohammad-Reza Fathollahi Facile realization of efficient blocking from ZnO/TiO2mismatch interface in dye-sensitized solar cells and precise microscopic modeling adapted by circuit analysis, Journal of Physics D: Applied Physics, Volume 49 (2016) no. 22, p. 225601 | DOI:10.1088/0022-3727/49/22/225601
  • A.-F. Kanta; A. Schrijnemakers; A. Decroly Electrochemical characterisations of ZnO nanowires for dye-sensitised solar cells, Materials Design, Volume 95 (2016), p. 481 | DOI:10.1016/j.matdes.2016.01.069
  • Jia-De Peng; Hsi-Hsin Lin; Chi-Ta Lee; Chuan-Ming Tseng; V. Suryanarayanan; R. Vittal; Kuo-Chuan Ho Hierarchically assembled microspheres consisting of nanosheets of highly exposed (001)-facets TiO2 for dye-sensitized solar cells, RSC Advances, Volume 6 (2016) no. 17, p. 14178 | DOI:10.1039/c5ra26307g
  • D.T. Cotfas; P.A. Cotfas; S. Kaplanis Methods and techniques to determine the dynamic parameters of solar cells: Review, Renewable and Sustainable Energy Reviews, Volume 61 (2016), p. 213 | DOI:10.1016/j.rser.2016.03.051
  • Ala Eddinne Touihri; Tarek Azizi; Rached Gharbi, 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (2015), p. 127 | DOI:10.1109/sta.2015.7505180
  • Zhongguan Liang; Weiqing Liu; Jun Chen; Linhua Hu; Songyuan Dai Microscopic Dynamics Research on the “Mature” Process of Dye-Sensitized Solar Cells after Injection of Highly Concentrated Electrolyte, ACS Applied Materials Interfaces, Volume 7 (2015) no. 2, p. 1100 | DOI:10.1021/am506101z
  • Hammad Cheema; Louis Ogbose; Ahmed El-Shafei Structure–property relationships: Steric effect in ancillary ligand and how it influences photocurrent and photovoltage in dye-sensitized solar cells, Dyes and Pigments, Volume 113 (2015), p. 151 | DOI:10.1016/j.dyepig.2014.08.005
  • Jianjian Lin; Yoon-Uk Heo; Andrew Nattestad; Yusuke Yamauchi; Shi Xue Dou; Jung Ho Kim Mesoporous Hierarchical Anatase for Dye-sensitized Solar Cells Achieving Over 10 | DOI:10.1016/j.electacta.2014.11.145
  • Weiqing Liu; Jun Chen; Minggang Chai; Zhongguan Liang; Linhua Hu; Songyuan Dai Role of electron transfer dynamics in nano/sub-micro scale skeleton structured photoanode of dye sensitized solar cells, Electrochimica Acta, Volume 165 (2015), p. 85 | DOI:10.1016/j.electacta.2015.02.238
  • Dickson D. Babu; Hammad Cheema; Dalia Elsherbiny; Ahmed El-Shafei; Airody Vasudeva Adhikari Molecular Engineering and Theoretical Investigation of Novel Metal-Free Organic Chromophores for Dye-Sensitized Solar Cells, Electrochimica Acta, Volume 176 (2015), p. 868 | DOI:10.1016/j.electacta.2015.07.079
  • Yu-Yan Li; Chun-Ting Li; Min-Hsin Yeh; Kuan-Chieh Huang; Ping-Wei Chen; R. Vittal; Kuo-Chuan Ho Graphite with Different Structures as Catalysts for Counter Electrodes in Dye-sensitized Solar Cells, Electrochimica Acta, Volume 179 (2015), p. 211 | DOI:10.1016/j.electacta.2015.06.007
  • Yuqiao Wang; Jing Lu; Jie Yin; Gang Lü; Yingmin Cui; Shasha Wang; Shengyuan Deng; Dan Shan; Hailiang Tao; Yueming Sun Influence of 4-tert-butylpyridine/guanidinium thiocyanate co-additives on band edge shift and recombination of dye-sensitized solar cells: experimental and theoretical aspects, Electrochimica Acta, Volume 185 (2015), p. 69 | DOI:10.1016/j.electacta.2015.10.103
  • Chanu Photiphitak; Pattana Rakkwamsuk; Pennapa Muthitamongkol; Chanchana Thanachayanont A Combined Effect of Plasmon Energy Transfer and Recombination Barrier in a Novel TiO2/MgO/Ag Working Electrode for Dye-Sensitized Solar Cells, International Journal of Photoenergy, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/795138
  • Shingjiang Jessie Lue; Yun-Ling Wu; Yung-Liang Tung; Chao-Ming Shih; Yi-Chun Wang; Jun-Ruei Li Functional titanium oxide nano-particles as electron lifetime, electrical conductance enhancer, and long-term performance booster in quasi-solid-state electrolyte for dye-sensitized solar cells, Journal of Power Sources, Volume 274 (2015), p. 1283 | DOI:10.1016/j.jpowsour.2014.10.194
  • Norani Muti Mohamed; Mehboob Khatani; Nor Hisham Hamid; Ahmad Zahrin Sahmer; Siti Nur Azella Zaine Performance analysis of dye solar cell with additional TiO2 layer under different light Intensities, Materials Science in Semiconductor Processing, Volume 38 (2015), p. 381 | DOI:10.1016/j.mssp.2015.04.012
  • S.M. Chao; T.H. Meen; L.C. Shih; T.Y. Chang; J.K. Tsai; T.C. Wu; T.L. Wu; L.W. Ji; C.J. Huang Effects of gold nanoparticles inlaid in the photo-electrode on the properties of dye-sensitized solar cells, Microelectronic Engineering, Volume 148 (2015), p. 29 | DOI:10.1016/j.mee.2015.08.005
  • Majid Raissan Al-bahrani; Waqar Ahmad; Hadja Fatima Mehnane; Ying Chen; Ze Cheng; Yihua Gao Enhanced Electrocatalytic Activity by RGO/MWCNTs/NiO Counter Electrode for Dye-sensitized Solar Cells, Nano-Micro Letters, Volume 7 (2015) no. 3, p. 298 | DOI:10.1007/s40820-015-0043-7
  • Hammad Cheema; Robert Younts; Louis Ogbose; Bhoj Gautam; Kenan Gundogdu; Ahmed El-Shafei A femtosecond study of the anomaly in electron injection for dye-sensitized solar cells: the influence of isomerization employing Ru(ii) sensitizers with anthracene and phenanthrene ancillary ligands, Physical Chemistry Chemical Physics, Volume 17 (2015) no. 4, p. 2750 | DOI:10.1039/c4cp04741a
  • Afonso Lopes; Armando Araújo; Adélio Mendes; Luísa Andrade A dye-sensitized solar cell model implementable in electrical circuit simulators, Solar Energy, Volume 122 (2015), p. 169 | DOI:10.1016/j.solener.2015.08.021
  • Lídice Vaillant; Elena Vigil; Fresnel Forcade; Thierry Thami; Hania Adnani; Christelle Yacou; André Ayral; Pierre Saint-Grégoire On fundamental mechanisms in dye sensitized solar cells through the behaviour of different mesoporous titanium dioxide films, The European Physical Journal Applied Physics, Volume 72 (2015) no. 2, p. 20404 | DOI:10.1051/epjap/2015150221
  • David Newell; Maeve Duffy; Richard Twohig, 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014 (2014), p. 3155 | DOI:10.1109/apec.2014.6803756
  • Soo Bong Hong; So Hyun Park; Jeong‐Hoon Kim; Sang‐Young Lee; Young Soo Kwon; Taiho Park; Phil‐Hyun Kang; Sung Chul Hong Triple‐Layer Structured Composite Separator Membranes with Dual Pore Structures and Improved Interfacial Contact for Sustainable Dye‐Sensitized Solar Cells, Advanced Energy Materials, Volume 4 (2014) no. 13 | DOI:10.1002/aenm.201400477
  • Wen Bo Xiao; Jin Dai; Guo Hua Tu; Hua Ming Wu An Investigation on Dye-Sensitized Solar Cell Performance Influenced by Radiant Intensity and Illuminated Area in Concentrating Photovoltaic System, Advanced Materials Research, Volume 1070-1072 (2014), p. 616 | DOI:10.4028/www.scientific.net/amr.1070-1072.616
  • Haijun Chen; Ning Wang; Hongcai He Equivalent Circuit Analysis of Photovoltaic-Thermoelectric Hybrid Device with Different TE Module Structure, Advances in Condensed Matter Physics, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/824038
  • Jiyong Lee; Hosung Kang; Jae-Yeol Hwang; Sung Wng Kim; Seunghyun Baik Flexible photoanodes of TiO2 particles and metallic single-walled carbon nanotubes for flexible dye-sensitized solar cells, Carbon, Volume 79 (2014), p. 337 | DOI:10.1016/j.carbon.2014.07.075
  • Min‐Hsin Yeh; Lu‐Yin Lin; Jheng‐Sin Su; Yow‐An Leu; R. Vittal; Chia‐Liang Sun; Kuo‐Chuan Ho Nanocomposite Graphene/Pt Electrocatalyst as Economical Counter Electrode for Dye‐Sensitized Solar Cells, ChemElectroChem, Volume 1 (2014) no. 2, p. 416 | DOI:10.1002/celc.201300081
  • Min‐Hsin Yeh; Lu‐Yin Lin; Ling‐Yu Chang; Yow‐An Leu; Wan‐Yu Cheng; Jiang‐Jen Lin; Kuo‐Chuan Ho Dye‐Sensitized Solar Cells with Reduced Graphene Oxide as the Counter Electrode Prepared by a Green Photothermal Reduction Process, ChemPhysChem, Volume 15 (2014) no. 6, p. 1175 | DOI:10.1002/cphc.201301128
  • Changdong Chen; Galhenage A. Sewvandi; Takafumi Kusunose; Yasuhiro Tanaka; Shunsuke Nakanishi; Qi Feng Synthesis of 010-faceted anatase TiO2nanoparticles from layered titanate for dye-sensitized solar cells, CrystEngComm, Volume 16 (2014) no. 37, p. 8885 | DOI:10.1039/c4ce01250j
  • Min‐Hsin Yeh; Lu‐Yin Lin; Tzu‐Yen Huang; Hui‐Min Chuang; Chih‐Wei Chu; Kuo‐Chuan Ho Study on Oxidation State Dependent Electrocatalytic Ability for I−/I3− Redox Reaction of Reduced Graphene Oxides, Electroanalysis, Volume 26 (2014) no. 1, p. 147 | DOI:10.1002/elan.201300321
  • Ling-Yu Chang; Yu-Yan Li; Chun-Ting Li; Chuan-Pei Lee; Miao-Syuan Fan; R. Vittal; Kuo-Chuan Ho; Jiang-Jen Lin A composite catalytic film of Ni-NPs/PEDOT: PSS for the counter electrodes in dye–sensitized solar cells, Electrochimica Acta, Volume 146 (2014), p. 697 | DOI:10.1016/j.electacta.2014.08.112
  • Thossaporn Pongklang; Dhirayut Chenvidhya; Krissanapong Kirtikara; Surawut Chuangchote; Nitikorn Silsirivanich Voltage and Frequency Dependent Impedances of Dye-sensitized Solar Cell, Energy Procedia, Volume 52 (2014), p. 536 | DOI:10.1016/j.egypro.2014.07.107
  • Lei Wang; Xiaoming Fang; Zhengguo Zhang Two-Step Precise Determination of the Parameters of the Single-Diode Equivalent Circuit Model for Dye-Sensitized Solar Cells, Heat Transfer Engineering, Volume 35 (2014) no. 11-12, p. 1007 | DOI:10.1080/01457632.2013.863045
  • Mona Bavarian; Siamak Nejati; Kenneth K. S. Lau; Daeyeon Lee; Masoud Soroush Theoretical and Experimental Study of a Dye-Sensitized Solar Cell, Industrial Engineering Chemistry Research, Volume 53 (2014) no. 13, p. 5234 | DOI:10.1021/ie4016914
  • Subrata Sarker; A. J. Saleh Ahammad; Hyun Woo Seo; Dong Min Kim Electrochemical Impedance Spectra of Dye-Sensitized Solar Cells: Fundamentals and Spreadsheet Calculation, International Journal of Photoenergy, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/851705
  • Hyunwoong Seo; Daiki Ichida; Giichiro Uchida; Kunihiro Kamataki; Naho Itagaki; Kazunori Koga; Masaharu Shiratani Analysis on the photovoltaic property of Si quantum dot-sensitized solar cells, International Journal of Precision Engineering and Manufacturing, Volume 15 (2014) no. 2, p. 339 | DOI:10.1007/s12541-014-0343-8
  • Lu-Yin Lin; Min-Hsin Yeh; Chia-Yuan Chen; R. Vittal; Chun-Guey Wu; Kuo-Chuan Ho Surface modification of TiO2 nanotube arrays with Y2O3 barrier layer: controlling charge recombination dynamics in dye-sensitized solar cells, J. Mater. Chem. A, Volume 2 (2014) no. 22, p. 8281 | DOI:10.1039/c4ta00550c
  • Ling-Yu Chang; Chuan-Pei Lee; Chun-Ting Li; Min-Hsin Yeh; Kuo-Chuan Ho; Jiang-Jen Lin Synthesis of a novel amphiphilic polymeric ionic liquid and its application in quasi-solid-state dye-sensitized solar cells, J. Mater. Chem. A, Volume 2 (2014) no. 48, p. 20814 | DOI:10.1039/c4ta05436a
  • Zhiwei Zheng; Jue Chen; Yue Hu; Wenjun Wu; Jianli Hua; He Tian Efficient sinter-free nanostructure Pt counter electrode for dye-sensitized solar cells, J. Mater. Chem. C, Volume 2 (2014) no. 40, p. 8497 | DOI:10.1039/c4tc01589d
  • Hyunwoong Seo; Daiki Ichida; Giichiro Uchida; Naho Itagaki; Kazunori Koga; Masaharu Shiratani Performance dependence of Si quantum dot-sensitized solar cells on counter electrode, Japanese Journal of Applied Physics, Volume 53 (2014) no. 5S1, p. 05FZ01 | DOI:10.7567/jjap.53.05fz01
  • Guangchao Wang; Zhixia Cai; Fengrong Li; Songting Tan; Shuhong Xie; Jiangyu Li 2 | DOI:10.1016/j.jallcom.2013.08.212
  • Chuan-Pei Lee; Chen-Yu Chou; Chia-Yuan Chen; Min-Hsin Yeh; Lu-Yin Lin; R. Vittal; Chun-Guey Wu; Kuo-Chuan Ho Zinc oxide-based dye-sensitized solar cells with a ruthenium dye containing an alkyl bithiophene group, Journal of Power Sources, Volume 246 (2014), p. 1 | DOI:10.1016/j.jpowsour.2013.05.101
  • Yong Ding; Li-E Mo; Li Tao; Yan-Mei Ma; Lin-Hua Hu; Yang Huang; Xia-Qin Fang; Jian-Xi Yao; Xiao-Wang Xi; Song-Yuan Dai TiO2 nanocrystalline layer as a bridge linking TiO2 sub-microspheres layer and substrates for high-efficiency dye-sensitized solar cells, Journal of Power Sources, Volume 272 (2014), p. 1046 | DOI:10.1016/j.jpowsour.2014.09.007
  • Sahrul Saehana; Muslimin; Mikrajuddin Abdullah Electrochemical impedance spectroscopy study of TiO2 based solar cells, Journal of Renewable and Sustainable Energy, Volume 6 (2014) no. 2 | DOI:10.1063/1.4870994
  • Sang-Woo Song; Kyung-Ju Lee; Ji-Hyung Roh; On-Jeon Park; Hwan-Sun Kim; Byung-Moo Moon; Min-Woo Ji Effect of a ga-doped ZnO thin film with a ZTO buffer layer fabricated by using pulsed DC magnetron sputter for dye-sensitized solar cells, Journal of the Korean Physical Society, Volume 65 (2014) no. 3, p. 308 | DOI:10.3938/jkps.65.308
  • Hee Hyun Gong; Soo Bong Hong; Sung Chul Hong Dispersion controlled platinum/multi-walled carbon nanotube hybrid for counter electrodes of dye-sensitized solar cells, Macromolecular Research, Volume 22 (2014) no. 4, p. 397 | DOI:10.1007/s13233-014-2055-4
  • Jia-De Peng; Pei-Chieh Shih; Hsi-Hsin Lin; Chuan-Ming Tseng; R. Vittal; V. Suryanarayanan; Kuo-Chuan Ho TiO 2 nanosheets with highly exposed (001)-facets for enhanced photovoltaic performance of dye-sensitized solar cells, Nano Energy, Volume 10 (2014), p. 212 | DOI:10.1016/j.nanoen.2014.09.014
  • Zhaosheng Xue; Long Wang; Wei Liu; Bin Liu Solid-state D102 dye sensitized/poly(3-hexylthiophene) hybrid solar cells on flexible Ti substrate, Renewable Energy, Volume 72 (2014), p. 22 | DOI:10.1016/j.renene.2014.06.043
  • Pin-Chuan Yao; Shih-Tse Hang Enhancing photovoltaic performances of dye-sensitized solar cells by multi-layered nanostructured titanium oxide photoelectrode, Solar Energy, Volume 108 (2014), p. 322 | DOI:10.1016/j.solener.2014.07.020
  • Hyunwoong Seo; Min-Kyu Son; Songyi Park; Myeongsoo Jeong; Hee-Je Kim; Giichiro Uchida; Naho Itagaki; Kazunori Koga; Masaharu Shiratani Electrochemical impedance analysis on the additional layers for the enhancement on the performance of dye-sensitized solar cell, Thin Solid Films, Volume 554 (2014), p. 122 | DOI:10.1016/j.tsf.2013.08.103
  • Min-Kyu Son; Hyunwoong Seo; Soo-Kyoung Kim; Songyi Park; Myeong-Soo Jeong; Hee-Je Kim Improved performance of CdS and dye co-sensitized solar cell using a TiO2sol-gel solution, physica status solidi (a), Volume 211 (2014) no. 8, p. 1726 | DOI:10.1002/pssa.201330492
  • Kay-Michael Guenther; Thomas Gimpel; Wolfgang Schade; Stefan Kontermann, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (2013), p. 0956 | DOI:10.1109/pvsc.2013.6744300
  • Yushuai Shi; Xiandui Dong The Factors Influencing Nonlinear Characteristics of the Short‐Circuit Current in Dye‐Sensitized Solar Cells Investigated by a Numerical Model, ChemPhysChem, Volume 14 (2013) no. 9, p. 1985 | DOI:10.1002/cphc.201300061
  • Van-Duong Dao; Ho-Suk Choi Dry plasma synthesis of a MWNT–Pt nanohybrid as an efficient and low-cost counter electrode material for dye-sensitized solar cells, Chemical Communications, Volume 49 (2013) no. 79, p. 8910 | DOI:10.1039/c3cc42151a
  • Wen-Bo Xiao; Wei-Qing Liu; Xing-Dao He Analysis of Electron Recombination in Dye Sensitized Solar Cells Based on the Forward Bias Dependence of Dark Current and Electroluminescence Characterization, Chinese Physics Letters, Volume 30 (2013) no. 10, p. 108801 | DOI:10.1088/0256-307x/30/10/108801
  • Qishuang Wu; Yue Shen; Qiandi Wang; Feng Gu; Meng Cao; Linjun Wang; Junhao Chu; Chunrui Wang, Eighth International Conference on Thin Film Physics and Applications, Volume 9068 (2013), p. 90681T | DOI:10.1117/12.2053639
  • Dongxing Kou; Weiqing Liu; Linhua Hu; Songyuan Dai Cooperative effect of adsorbed cations on electron transport and recombination behavior in dye-sensitized solar cells, Electrochimica Acta, Volume 100 (2013), p. 197 | DOI:10.1016/j.electacta.2013.03.105
  • Hyunwoong Seo; Yuting Wang; Giichiro Uchida; Kunihiro Kamataki; Naho Itagaki; Kazunori Koga; Masaharu Shiratani The reduction of charge recombination and performance enhancement by the surface modification of Si quantum dot-sensitized solar cell, Electrochimica Acta, Volume 87 (2013), p. 213 | DOI:10.1016/j.electacta.2012.09.087
  • Chen-Yu Chou; Chun-Ting Li; Chuan-Pei Lee; Lu-Yin Lin; Min-Hsin Yeh; R. Vittal; Kuo-Chuan Ho ZnO nanowire/nanoparticles composite films for the photoanodes of quantum dot-sensitized solar cells, Electrochimica Acta, Volume 88 (2013), p. 35 | DOI:10.1016/j.electacta.2012.09.121
  • Lu-Yin Lin; Min-Hsin Yeh; Chuan-Pei Lee; Chen-Yu Chou; Kuo-Chuan Ho Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes, Electrochimica Acta, Volume 88 (2013), p. 421 | DOI:10.1016/j.electacta.2012.10.080
  • Heping Shen; Xin Li; Jianbao Li; Wenli Wang; Hong Lin Effect of proton numbers of phosphate-based co-adsorbents on the photovoltaic performance of dye-sensitized solar cells, Electrochimica Acta, Volume 97 (2013), p. 160 | DOI:10.1016/j.electacta.2013.02.107
  • Jin-He Qi; Ying Li; Thanh-Tung Duong; Hyung-Jin Choi; Soon-Gil Yoon Dye-sensitized solar cell based on AZO/Ag/AZO multilayer transparent conductive oxide film, Journal of Alloys and Compounds, Volume 556 (2013), p. 121 | DOI:10.1016/j.jallcom.2012.12.127
  • Thanh-Tung Duong; Hyung-Jin Choi; Qi-Jin He; Anh-Tuan Le; Soon-Gil Yoon Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition, Journal of Alloys and Compounds, Volume 561 (2013), p. 206 | DOI:10.1016/j.jallcom.2013.01.188
  • Yuqiao Wang; Xia Cui; Yuan Zhang; Xiaorui Gao; Yueming Sun Preparation of Cauliflower-like ZnO Films by Chemical Bath Deposition: Photovoltaic Performance and Equivalent Circuit of Dye-sensitized Solar Cells, Journal of Materials Science Technology, Volume 29 (2013) no. 2, p. 123 | DOI:10.1016/j.jmst.2012.12.019
  • Min-Kyu Son; Hyunwoong Seo; Kyoung-Jun Lee; Soo-Kyoung Kim; Songyi Park; Myeong-Soo Jeong; Hee-Je Kim Computational modeling and experimental analysis on the improvement of current mismatch in a W-type series-connected dye-sensitized solar module, Journal of Photochemistry and Photobiology A: Chemistry, Volume 268 (2013), p. 17 | DOI:10.1016/j.jphotochem.2013.06.011
  • Min-Hsin Yeh; Lu-Yin Lin; Chuan-Pei Lee; Chen-Yu Chou; Keng-Wei Tsai; Jiann-T'suen Lin; Kuo-Chuan Ho High performance CdS quantum-dot-sensitized solar cells with Ti-based ceramic materials as catalysts on the counter electrode, Journal of Power Sources, Volume 237 (2013), p. 141 | DOI:10.1016/j.jpowsour.2013.02.092
  • Yi-Cheng Lin; Yi-Ting Chen; Pin-Chuan Yao Effect of post-heat-treated NiOx overlayer on performance of nanocrystalline TiO2 thin films for dye-sensitized solar cells, Journal of Power Sources, Volume 240 (2013), p. 705 | DOI:10.1016/j.jpowsour.2013.05.031
  • Jeffrey Chang; Chuan-Pei Lee; Dhirendra Kumar; Ping-Wei Chen; Lu-Yin Lin; K.R. Justin Thomas; Kuo-Chuan Ho Co-sensitization promoted light harvesting for organic dye-sensitized solar cells using unsymmetrical squaraine dye and novel pyrenoimidazole-based dye, Journal of Power Sources, Volume 240 (2013), p. 779 | DOI:10.1016/j.jpowsour.2013.04.075
  • Lu-Yin Lin; Chia-Yuan Chen; Min-Hsin Yeh; Keng-Wei Tsai; Chuan-Pei Lee; R. Vittal; Chun-Guey Wu; Kuo-Chuan Ho Improved performance of dye-sensitized solar cells using TiO 2 nanotubes infiltrated by TiO 2 nanoparticles using a dipping–rinsing–hydrolysis process, Journal of Power Sources, Volume 243 (2013), p. 535 | DOI:10.1016/j.jpowsour.2013.05.163
  • Kang-Il Jang; Eunpyo Hong; Jung Hyeun Kim Improved electrochemical performance of dye-sensitized solar cell via surface modifications of the working electrode by electrodeposition, Korean Journal of Chemical Engineering, Volume 30 (2013) no. 3, p. 620 | DOI:10.1007/s11814-012-0189-7
  • Katrine Flarup Jensen; Welmoed Veurman; Henning Brandt; Chan Im; Jürgen Wilde; Andreas Hinsch Parameter Study on UV-induced Degradation of Dye-sensitized Solar Cells, MRS Proceedings, Volume 1537 (2013) | DOI:10.1557/opl.2013.790
  • Van-Duong Dao; Ho-Suk Choi; Kwang-Deog Jung Effect of ohmic serial resistance on the efficiency of dye-sensitized solar cells, Materials Letters, Volume 92 (2013), p. 11 | DOI:10.1016/j.matlet.2012.10.039
  • Sahrul Saehana; Elfi Yuliza; Pepen Arifin; Khairurrijal Khairurrijal; Mikrajuddin Abdullah Dye-Sensitized Solar Cells (DSSC) from Black Rice and its Performance Improvement by Depositing Interconnected Copper (Copper Bridge) into the Space between TiO2 Nanoparticles, Materials Science Forum, Volume 737 (2013), p. 43 | DOI:10.4028/www.scientific.net/msf.737.43
  • Min-Hsin Yeh; Lu-Yin Lin; Chen-Yu Chou; Chuan-Pei Lee; Hui-Min Chuang; R. Vittal; Kuo-Chuan Ho Preparing core–shell structure of ZnO@TiO2 nanowires through a simple dipping–rinse–hydrolyzation process as the photoanode for dye-sensitized solar cells, Nano Energy, Volume 2 (2013) no. 5, p. 609 | DOI:10.1016/j.nanoen.2013.07.013
  • Zhaosheng Xue; Long Wang; Bin Liu Facile fabrication of co-sensitized plastic dye-sensitized solar cells using multiple electrophoretic deposition, Nanoscale, Volume 5 (2013) no. 6, p. 2269 | DOI:10.1039/c3nr34206a
  • Teen-Hang Meen; Jenn-Kai Tsai; Shi-Mian Chao; Yu-Chien Lin; Tien-Chuan Wu; Tang-Yun Chang; Liang-Wen Ji; Walter Water; Wen-Ray Chen; I-Tseng Tang; Chien-Jung Huang Surface plasma resonant effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells, Nanoscale Research Letters, Volume 8 (2013) no. 1 | DOI:10.1186/1556-276x-8-450
  • Roberto Giannuzzi; Michele Manca; Giuseppe Gigli A new electrical model for the analysis of a partially shaded dye‐sensitized solar cells module, Progress in Photovoltaics: Research and Applications, Volume 21 (2013) no. 7, p. 1520 | DOI:10.1002/pip.2219
  • Lorenzo Dominici; Vittoria Roiati; Francesco Michelotti; Thomas M. Brown; Andrea Reale; Aldo Di Carlo Interferometric study of microchamber in large area dye solar cells, Solar Energy, Volume 95 (2013), p. 246 | DOI:10.1016/j.solener.2013.05.013
  • Hsin-Fang Lee; Yi-Ting Chua; Sz-Min Yang; Po-Ya Hsu; Fan-Yi Ouyang; Yung-Liang Tung; Ji-Jung Kai Efficient, stable, and flexible dye-sensitized solar cells based on nanocomposite gel electrolytes, Thin Solid Films, Volume 544 (2013), p. 301 | DOI:10.1016/j.tsf.2013.03.091
  • Xu Wei-Wei; Hu Lin-Hua; Luo Xiang-Dong; Liu Pei-Sheng; Dai Song-Yuan Photoelectricity performance research based on the sol-modified thin film electrode of dye-sensitized solar cells, Acta Physica Sinica, Volume 61 (2012) no. 8, p. 088801 | DOI:10.7498/aps.61.088801
  • Min-Hsin Yeh; Chia-Liang Sun; Jheng-Sin Su; Lu-Yin Lin; Chuan-Pei Lee; Chia-Yuan Chen; Chun-Guey Wu; R. Vittal; Kuo-Chuan Ho A low-cost counter electrode of ITO glass coated with a graphene/Nafion® composite film for use in dye-sensitized solar cells, Carbon, Volume 50 (2012) no. 11, p. 4192 | DOI:10.1016/j.carbon.2012.05.001
  • Wei-Wei Xu; Lin-Hua Hu; Xiang-Dong Luo; Pei-Sheng Liu; Song-Yuan Dai The Electric Mechanism of Surface Pretreatments for Dye-Sensitized Solar Cells Based on Internal Equivalent Resistance Analysis, Chinese Physics Letters, Volume 29 (2012) no. 1, p. 018401 | DOI:10.1088/0256-307x/29/1/018401
  • Lu-Yin Lin; Min-Hsin Yeh; Chuan-Pei Lee; Chen-Yu Chou; R. Vittal; Kuo-Chuan Ho Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles, Electrochimica Acta, Volume 62 (2012), p. 341 | DOI:10.1016/j.electacta.2011.12.036
  • Chih-Yu Hsu; Wei-Ting Chen; Yung-Chung Chen; Hung-Yu Wei; Yung-Sheng Yen; Kuan-Chieh Huang; Kuo-Chuan Ho; Chih-Wei Chu; Jiann T. Lin Charge transporting enhancement of NiO photocathodes for p-type dye-sensitized solar cells, Electrochimica Acta, Volume 66 (2012), p. 210 | DOI:10.1016/j.electacta.2012.01.081
  • Kyoung-Jun Lee; Jeong-Hoon Kim; Ho-Sung Kim; Dongsul Shin; Dong-Wook Yoo; Hee-Je Kim A Study on a Solar Simulator for Dye Sensitized Solar Cells, International Journal of Photoenergy, Volume 2012 (2012), p. 1 | DOI:10.1155/2012/834347
  • Min-Hsin Yeh; Lu-Yin Lin; Yu-Yan Li; Jeffrey Chang; Ping-Wei Chen; Chuan-Pei Lee; Kuo-Chuan Ho Composite Films Based on Poly(3,4-ethylene dioxythiophene):Poly(styrene sulfonate) Conducting Polymer and TiC Nanoparticles as the Counter Electrodes for Flexible Dye-Sensitized Solar Cells, Japanese Journal of Applied Physics, Volume 51 (2012) no. 10S, p. 10NE01 | DOI:10.7567/jjap.51.10ne01
  • Hyunwoong Seo; Min-Kyu Son; Hee-Je Kim; Masaharu Shiratani Improvement on the Long-Term Stability of Dye-Sensitized Solar Module by Structural Alternation, Japanese Journal of Applied Physics, Volume 51 (2012) no. 10S, p. 10NE21 | DOI:10.7567/jjap.51.10ne21
  • Sahrul Saehana; Pepen Arifin; Khairurrijal; Mikrajuddin Abdullah A new architecture for solar cells involving a metal bridge deposited between active TiO2 particles, Journal of Applied Physics, Volume 111 (2012) no. 12 | DOI:10.1063/1.4730393
  • Wenjun Wu; Jing Zhang; Haibo Yang; Bin Jin; Yue Hu; Jianli Hua; Chao Jing; Yitao Long; He Tian Narrowing band gap of platinum acetylide dye-sensitized solar cell sensitizers with thiophene π-bridges, Journal of Materials Chemistry, Volume 22 (2012) no. 12, p. 5382 | DOI:10.1039/c2jm15928g
  • Van-Duong Dao; Seung Hyeon Ko; Ho-Suk Choi; Joong-Kee Lee Pt-NP–MWNT nanohybrid as a robust and low-cost counter electrode material for dye-sensitized solar cells, Journal of Materials Chemistry, Volume 22 (2012) no. 28, p. 14023 | DOI:10.1039/c2jm31332d
  • Hyunwoong Seo; Min-Kyu Son; Songyi Park; Hee-Je Kim; Masaharu Shiratani The blocking effect of charge recombination by sputtered and acid-treated ZnO thin film in dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, Volume 248 (2012), p. 50 | DOI:10.1016/j.jphotochem.2012.08.016
  • Lu-Yin Lin; Chuan-Pei Lee; Min-Hsin Yeh; Abhishek Baheti; R. Vittal; K.R. Justin Thomas; Kuo-Chuan Ho A novel 2,7-diaminofluorene-based organic dye for a dye-sensitized solar cell, Journal of Power Sources, Volume 215 (2012), p. 122 | DOI:10.1016/j.jpowsour.2012.04.084
  • Takehiko MURANAKA; Yasuyuki KUNIHIRO; Masayuki MORITA; Ryuichi SHIRATSUCHI Dye-Sensitized Solar Cells with Composite Photoanodes Incorporating Zinc Oxide Micro-Flower Structure, Journal of The Surface Finishing Society of Japan, Volume 63 (2012) no. 8, p. 514 | DOI:10.4139/sfj.63.514
  • Michelle Chitambar; Zhijie Wang; Yiming Liu; Angus Rockett; Stephen Maldonado Dye-Sensitized Photocathodes: Efficient Light-Stimulated Hole Injection into p-GaP Under Depletion Conditions, Journal of the American Chemical Society, Volume 134 (2012) no. 25, p. 10670 | DOI:10.1021/ja304019n
  • Teen-Hang Meen; Yi-Ting Jhuo; Shi-Mian Chao; Nung-Yi Lin; Liang-Wen Ji; Jenn-Kai Tsai; Tien-Chuan Wu; Wen-Ray Chen; Walter Water; Chien-Jung Huang Effect of TiO2 nanotubes with TiCl4 treatment on the photoelectrode of dye-sensitized solar cells, Nanoscale Research Letters, Volume 7 (2012) no. 1 | DOI:10.1186/1556-276x-7-579
  • Colin Klinger; Yogeshwari Patel; Henk W. Ch. Postma; Arum Han Carbon Nanotube Solar Cells, PLoS ONE, Volume 7 (2012) no. 5, p. e37806 | DOI:10.1371/journal.pone.0037806
  • Hyunwoong Seo; Min-Kyu Son; Jin-Kyoung Kim; Jinho Choi; Seokwon Choi; Soo-Kyoung Kim; Hee-Je Kim Analysis of current loss from a series-parallel combination of dye-sensitized solar cells using electrochemical impedance spectroscopy, Photonics and Nanostructures - Fundamentals and Applications, Volume 10 (2012) no. 4, p. 568 | DOI:10.1016/j.photonics.2012.04.011
  • Lu‐Yin Lin; Chuan‐Pei Lee; Keng‐Wei Tsai; Min‐Hsin Yeh; Chia‐Yuan Chen; R. Vittal; Chun‐Guey Wu; Kuo‐Chuan Ho Low‐temperature flexible Ti/TiO2 photoanode for dye‐sensitized solar cells with binder‐free TiO2 paste, Progress in Photovoltaics: Research and Applications, Volume 20 (2012) no. 2, p. 181 | DOI:10.1002/pip.1116
  • Andreas Hinsch; Welmoed Veurman; Henning Brandt; Ramiro Loayza Aguirre; Katarzyna Bialecka; Katrine Flarup Jensen Worldwide first fully up‐scaled fabrication of 60 × 100 cm2 dye solar module prototypes, Progress in Photovoltaics: Research and Applications, Volume 20 (2012) no. 6, p. 698 | DOI:10.1002/pip.1213
  • Han Min Tian; Rui Xia Yang; Feng Lan Tian TiCl4 Treatment to the Substrate of Dye-Sensitized Solar Cell for the Applications on BIPV, Advanced Materials Research, Volume 415-417 (2011), p. 205 | DOI:10.4028/www.scientific.net/amr.415-417.205
  • Ming-Yu Yen; Min-Chien Hsiao; Shu-Hang Liao; Po-I Liu; Han-Min Tsai; Chen-Chi M. Ma; Nen-Wen Pu; Ming-Der Ger Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells, Carbon, Volume 49 (2011) no. 11, p. 3597 | DOI:10.1016/j.carbon.2011.04.062
  • Weiqing Liu; Dongxing Kou; Linhua Hu; Songyuan Dai The kinetics of electron transfer across the multi-point contact interface through simplifying the complex structure in dye-sensitized solar cell, Chemical Physics Letters, Volume 513 (2011) no. 1-3, p. 145 | DOI:10.1016/j.cplett.2011.07.070
  • Min-Hsin Yeh; Chuan-Pei Lee; Lu-Yin Lin; Po-Chin Nien; Po-Yen Chen; R. Vittal; Kuo-Chuan Ho A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells, Electrochimica Acta, Volume 56 (2011) no. 17, p. 6157 | DOI:10.1016/j.electacta.2011.04.028
  • Heping Shen; Hong Lin; Yizhu Liu; Xin Li; Jing Zhang; Ning Wang; Jianbao Li A novel diphenylphosphinic acid coadsorbent for dye-sensitized solar cell, Electrochimica Acta, Volume 56 (2011) no. 5, p. 2092 | DOI:10.1016/j.electacta.2010.11.087
  • Lu-Yin Lin; Min-Hsin Yeh; Chuan-Pei Lee; You-Han Chen; R.Vittal; Kuo-Chuan Ho Metal-based flexible TiO2 photoanode with titanium oxide nanotubes as the underlayer for enhancement of performance of a dye-sensitized solar cell, Electrochimica Acta, Volume 57 (2011), p. 270 | DOI:10.1016/j.electacta.2011.03.065
  • Chi-Hui Chien; Ming-Lang Tsai; Ting-Hsuan Su; Chi-Chang Hsieh; Yan-Huei Li; Li-Chong Chen; Hua-De Gau Efficiency Enhancement of Dye-Sensitized Solar Cell, Experimental and Applied Mechanics, Volume 6 (2011), p. 137 | DOI:10.1007/978-1-4419-9792-0_24
  • Wei Chen; Shihe Yang Dye-sensitized solar cells based on ZnO nanotetrapods, Frontiers of Optoelectronics in China, Volume 4 (2011) no. 1, p. 24 | DOI:10.1007/s12200-011-0207-0
  • Yong Peng; Jefferson Zhe Liu; Kun Wang; Yi-Bing Cheng Influence of Parameters of Cold Isostatic Pressing on TiO2Films for Flexible Dye-Sensitized Solar Cells, International Journal of Photoenergy, Volume 2011 (2011), p. 1 | DOI:10.1155/2011/410352
  • Wen-Qian ZHOU; Yu-Ming LU; Chang-Zhao CHEN; Zhi-Yong LIU; Chuan-Bing CAI Effect of Li-doped TiO2 Compact Layers for Dye Sensitized Solar Cells, Journal of Inorganic Materials, Volume 26 (2011) no. 8, p. 819 | DOI:10.3724/sp.j.1077.2011.00819
  • Chuan-Pei Lee; Min-Hsin Yeh; R. Vittal; Kuo-Chuan Ho Solid-state dye-sensitized solar cell with a charge transfer layer comprising two ionic liquids and a carbon material, Journal of Materials Chemistry, Volume 21 (2011) no. 39, p. 15471 | DOI:10.1039/c1jm11581b
  • Min-Hsin Yeh; Lu-Yin Lin; Chuan-Pei Lee; Hung-Yu Wei; Chia-Yuan Chen; Chun-Guey Wu; R. Vittal; Kuo-Chuan Ho A composite catalytic film of PEDOT:PSS/TiN–NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell, Journal of Materials Chemistry, Volume 21 (2011) no. 47, p. 19021 | DOI:10.1039/c1jm12428e
  • Sheng Xu; Hao Hu; Bobby Sebo; Bolei Chen; Qidong Tai; Xingzhong Zhao Modification of nanocrystalline porous films by poly(ethyleneglycol) for quasi-solid dye-sensitized solar cells, Journal of Power Sources, Volume 196 (2011) no. 24, p. 10817 | DOI:10.1016/j.jpowsour.2011.09.015
  • Chuan-Pei Lee; Lu-Yin Lin; Keng-Wei Tsai; R. Vittal; Kuo-Chuan Ho Enhanced performance of dye-sensitized solar cell with thermally-treated TiN in its TiO2 film prepared at low temperature, Journal of Power Sources, Volume 196 (2011) no. 3, p. 1632 | DOI:10.1016/j.jpowsour.2010.09.022
  • Chuan-Pei Lee; Lu-Yin Lin; R. Vittal; Kuo-Chuan Ho Favorable effects of titanium nitride or its thermally treated version in a gel electrolyte for a quasi-solid-state dye-sensitized solar cell, Journal of Power Sources, Volume 196 (2011) no. 3, p. 1665 | DOI:10.1016/j.jpowsour.2010.08.039
  • Lu-Yin Lin; Chuan-Pei Lee; R.Vittal; Kuo-Chuan Ho Improving the durability of dye-sensitized solar cells through back illumination, Journal of Power Sources, Volume 196 (2011) no. 3, p. 1671 | DOI:10.1016/j.jpowsour.2010.08.032
  • Young-Moon Han; Sook-Hyun Hwang; Myung-Hoon Kang; Young-Joo Kim; Hyun-Kook Kim; Sang-Hyo Kim; Hyo-Jun Bae; Hyon-Kwang Choi; Min-Hyon Jeon Effect of Electrochemical Properties and Optical Transmittance of Carbon Nanotubes Counter Electrodes on the Energy Conversion Efficiency of Dye-sensitized Solar Cells, Journal of the Korean Institute of Electrical and Electronic Material Engineers, Volume 24 (2011) no. 4, p. 333 | DOI:10.4313/jkem.2011.24.4.333
  • Chuan-Pei Lee; Jen-Chieh Lin; Yi-Chun Wang; Chen-Yu Chou; Min-Hsin Yeh; R. Vittal; Kuo-Chuan Ho Synthesis of hexagonal ZnO clubs with opposite faces of unequal dimensions for the photoanode of dye-sensitized solar cells, Physical Chemistry Chemical Physics, Volume 13 (2011) no. 47, p. 20999 | DOI:10.1039/c1cp21762c
  • Linyu Li; Yue Shen; Guizhi Wu; Feng Gu; Meng Cao; Linjun Wang Sol-modified ZnO photoanode for dye-sensitized solar cells, Semiconductor Science and Technology, Volume 26 (2011) no. 12, p. 125008 | DOI:10.1088/0268-1242/26/12/125008
  • Liu Wei-Qing; Kou Dong-Xing; Hu Lin-Hua; Huang Yang; Jiang Nian-Quan; Dai Song-Yuan Processes of charge transport and transfer in dye-sensitized solar cell by electrical and optical modulation techniques, Acta Physica Sinica, Volume 59 (2010) no. 7, p. 5141 | DOI:10.7498/aps.59.5141
  • Janne Halme; Paula Vahermaa; Kati Miettunen; Peter Lund Device Physics of Dye Solar Cells, Advanced Materials, Volume 22 (2010) no. 35 | DOI:10.1002/adma.201000726
  • Jin-Kyoung Kim; Hyunwoong Seo; Min-Kyu Son; Inyoung Shin; Jitae Hong; Hee-Je Kim The analysis of the change in the performance and impedance of dye-sensitized solar cell according to the dye-adsorption time, Current Applied Physics, Volume 10 (2010) no. 3, p. S418 | DOI:10.1016/j.cap.2010.02.024
  • Weiqing Liu; Linhua Hu; Songyuan Dai; Lei Guo; Nianquan Jiang; Dongxing Kou The effect of the series resistance in dye-sensitized solar cells explored by electron transport and back reaction using electrical and optical modulation techniques, Electrochimica Acta, Volume 55 (2010) no. 7, p. 2338 | DOI:10.1016/j.electacta.2009.11.065
  • Alessio Gagliardi; Simone Mastroianni; Desiree Gentilini; Fabrizio Giordano; Andrea Reale; Thomas M. Brown; Aldo Di Carlo Multiscale Modeling of Dye Solar Cells and Comparison With Experimental Data, IEEE Journal of Selected Topics in Quantum Electronics, Volume 16 (2010) no. 6, p. 1611 | DOI:10.1109/jstqe.2010.2047097
  • Taiichi Mure; Yuichi Kuroda; Suehiro Ohkubo; Takehiko Muranaka; Satoshi Ishimaru; Ryuichi Shiratsuchi Collection of Electrons in Dye-Sensitized Solar Cells Improved by Three Dimensional Fluorine Doped SnO2 Transparent Electrodes, IEEJ Transactions on Fundamentals and Materials, Volume 130 (2010) no. 2, p. 167 | DOI:10.1541/ieejfms.130.167
  • Chuan-Pei Lee; Po-Yen Chen; R. Vittal; Kuo-Chuan Ho Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black, Journal of Materials Chemistry, Volume 20 (2010) no. 12, p. 2356 | DOI:10.1039/b922350a
  • Chuan-Pei Lee; Lu-Yin Lin; Po-Yen Chen; R. Vittal; Kuo-Chuan Ho All-solid-state dye-sensitized solar cells incorporating SWCNTs and crystal growth inhibitor, Journal of Materials Chemistry, Volume 20 (2010) no. 18, p. 3619 | DOI:10.1039/b925221e
  • Yi-Hsuan Lai; Chia-Yu Lin; Hsin-Wei Chen; Jian-Ging Chen; Chung-Wei Kung; R. Vittal; Kuo-Chuan Ho Fabrication of a ZnO film with a mosaic structure for a high efficient dye-sensitized solar cell, Journal of Materials Chemistry, Volume 20 (2010) no. 42, p. 9379 | DOI:10.1039/c0jm01787f
  • Po-Yen Chen; Chuan-Pei Lee; R. Vittal; Kuo-Chuan Ho A quasi solid-state dye-sensitized solar cell containing binary ionic liquid and polyaniline-loaded carbon black, Journal of Power Sources, Volume 195 (2010) no. 12, p. 3933 | DOI:10.1016/j.jpowsour.2009.12.086
  • Lu-Yin Lin; Chuan-Pei Lee; R. Vittal; Kuo-Chuan Ho Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode, Journal of Power Sources, Volume 195 (2010) no. 13, p. 4344 | DOI:10.1016/j.jpowsour.2010.01.031
  • Hsin-Wei Chen; Chih-Yu Hsu; Jian-Ging Chen; Kun-Mu Lee; Chun-Chieh Wang; Kuan-Chieh Huang; Kuo-Chuan Ho Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods, Journal of Power Sources, Volume 195 (2010) no. 18, p. 6225 | DOI:10.1016/j.jpowsour.2010.01.009
  • Chuan-Pei Lee; Po-Yen Chen; R. Vittal; Kuo-Chuan Ho Enhanced performance of a dye-sensitized solar cell with the incorporation of titanium carbide in the TiO2 matrix, Physical Chemistry Chemical Physics, Volume 12 (2010) no. 32, p. 9249 | DOI:10.1039/b923477b
  • Wei Chen; Yongcai Qiu; Shihe Yang A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells, Physical Chemistry Chemical Physics, Volume 12 (2010) no. 32, p. 9494 | DOI:10.1039/c000584c
  • Jesse W. Ondersma; Thomas W. Hamann Impedance Investigation of Dye-Sensitized Solar Cells Employing Outer-Sphere Redox Shuttles, The Journal of Physical Chemistry C, Volume 114 (2010) no. 1, p. 638 | DOI:10.1021/jp908442p
  • Lu-Yin Lin; Po-Chin Nien; Chuan-Pei Lee; Keng-Wei Tsai; Min-Hsin Yeh; R. Vittal; Kuo-Chuan Ho Low-Temperature Flexible Photoanode and Net-Like Pt Counter Electrode for Improving the Performance of Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, Volume 114 (2010) no. 49, p. 21808 | DOI:10.1021/jp107308r
  • Jae Pil Lee; Beomjin Yoo; T. Suresh; Moon Sung Kang; R. Vital; Kang-Jin Kim Novel silane-substituted benzimidazolium iodide as gel electrolyte for dye-sensitized solar cells, Electrochimica Acta, Volume 54 (2009) no. 18, p. 4365 | DOI:10.1016/j.electacta.2009.03.006
  • Minna Toivola; Janne Halme; Lauri Peltokorpi; Peter Lund; A. Hagfeldt Investigation of Temperature and Aging Effects in Nanostructured Dye Solar Cells Studied by Electrochemical Impedance Spectroscopy, International Journal of Photoenergy, Volume 2009 (2009) no. 1 | DOI:10.1155/2009/786429
  • Hanmin Tian; Lifei Liu; Bin Liu; ShiKui Yuan; Xiangyan Wang; Ying Wang; Tao Yu; Zhigang Zou Influence of capacitance characteristic on dye-sensitized solar cell's IPCE measurement, Journal of Physics D: Applied Physics, Volume 42 (2009) no. 4, p. 045109 | DOI:10.1088/0022-3727/42/4/045109
  • Hyunwoong Seo; Minkyu Son; Jitae Hong; Dong-Yoon Lee; Tae-Pung An; Hyunju Kim; Hee-Je Kim The fabrication of efficiency-improved W-series interconnect type of module by balancing the performance of single cells, Solar Energy, Volume 83 (2009) no. 12, p. 2217 | DOI:10.1016/j.solener.2009.09.003
  • Tian Hanmin; Zhang Xiaobo; Yuan Shikui; Wang Xiangyan; Tian Zhipeng; Liu Bin; Wang Ying; Yu Tao; Zou Zhigang An improved method to estimate the equivalent circuit parameters in DSSCs, Solar Energy, Volume 83 (2009) no. 5, p. 715 | DOI:10.1016/j.solener.2008.10.019
  • Chuan-Pei Lee; Kun-Mu Lee; Po-Yen Chen; Kuo-Chuan Ho On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, Volume 93 (2009) no. 8, p. 1411 | DOI:10.1016/j.solmat.2009.03.010
  • Hyunwoong Seo; Mijeong Kim; Min Kyu Son; Kyoung Jun Lee; Jeonghoon Kim; Hee Je Kim, 2008 33rd IEEE Photovolatic Specialists Conference (2008), p. 1 | DOI:10.1109/pvsc.2008.4922662
  • Nobuhiro Fuke; Atsushi Fukui; Ryohichi Komiya; Ashraful Islam; Yasuo Chiba; Masatoshi Yanagida; Ryohsuke Yamanaka; Liyuan Han New Approach to Low-Cost Dye-Sensitized Solar Cells With Back Contact Electrodes, Chemistry of Materials, Volume 20 (2008) no. 15, p. 4974 | DOI:10.1021/cm800797v
  • Yuh-Lang Lee; Yu-Jen Shen; Yu-Min Yang A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications, Nanotechnology, Volume 19 (2008) no. 45, p. 455201 | DOI:10.1088/0957-4484/19/45/455201
  • A. Hinsch; S. Behrens; M. Berginc; H. Bönnemann; H. Brandt; A. Drewitz; F. Einsele; D. Faßler; D. Gerhard; H. Gores; R. Haag; T. Herzig; S. Himmler; G. Khelashvili; D. Koch; G. Nazmutdinova; U. Opara‐Krasovec; P. Putyra; U. Rau; R. Sastrawan; T. Schauer; C. Schreiner; S. Sensfuss; C. Siegers; K. Skupien; P. Wachter; J. Walter; P. Wasserscheid; U. Würfel; M. Zistler Material development for dye solar modules: results from an integrated approach, Progress in Photovoltaics: Research and Applications, Volume 16 (2008) no. 6, p. 489 | DOI:10.1002/pip.832
  • Yongseok Jun; Man Gu Kang The Characterization of Nanocrystalline Dye-Sensitized Solar Cells with Flexible Metal Substrates by Electrochemical Impedance Spectroscopy, Journal of The Electrochemical Society, Volume 154 (2007) no. 1, p. B68 | DOI:10.1149/1.2374943
  • Yongseok Jun; Jongdae Kim; Man Gu Kang A study of stainless steel-based dye-sensitized solar cells and modules, Solar Energy Materials and Solar Cells, Volume 91 (2007) no. 9, p. 779 | DOI:10.1016/j.solmat.2007.01.007
  • Avi Shalav Photovoltaics literature survey (No. 48), Progress in Photovoltaics: Research and Applications, Volume 14 (2006) no. 6, p. 577 | DOI:10.1002/pip.729

Cité par 196 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: