Plan
Comptes Rendus

Chiral single-molecule magnet with a 35 K energy barrier for relaxation of the magnetization
Comptes Rendus. Chimie, Volume 15 (2012) no. 10, pp. 937-942.

Résumés

The reaction of [MnII(S-mandelato)2] complexes with 5-Methyl-salicylaldoxim (5-Me-saloxH2) leads to the chiral hexanuclear manganese(III) complex [Mn63-O)2(5-Me-salox)6(S-mandelato)2(EtOH)6]. The structure can be viewed as two neutral stacked {Mn33-O)(5-Me-salox)3(S-mandelato)(EtOH)3} triangular subunits linked together in a head-to-tail manner by two phenoxo and two oximato μ3-oxygen atoms of the deprotonated oxime groups of the ligands. The magnetic study of this chiral hexanuclear manganese(III) complex reveals a SMM behaviour with an energy barrier of the slow relaxation of the magnetisation equal to 35 K. Considering the structural features, the fitting of the temperature dependence of the magnetic susceptibility gives a good agreement with the experimental data considering two sets of interactions: J1 = +0.37 cm−1 and J2 = −0.70 cm−1 within (ferromagnetic) and between (antiferromagnetic), respectively, the {Mn33-O)(5-Me-salox)3(S-mandelato)(EtOH)3} triangular subunits.

Supplementary Materials:
Supplementary materials for this article are supplied as separate files:

La réaction du complexe [MnII(S-mandélato)2] avec le 5-méthyl-salicylaldoxime (5-Me-saloxH2) donne un complexe hexanucléaire chiral de manganèse(III) [MnIII63-O)2(5-Me-salox)6(S-mandélato)2(EtOH)6]. La structure est constituée de deux sous-unités neutres {Mn33-O)(5-Me-salox)3(S-mandélato)(EtOH)3} triangulaires assemblées tête-bêche par deux atomes d’oxygène phenoxo et deux atomes d’oxygène oximato μ3 des groupes oxime déprotonés des ligands. L’étude magnétique de ce complexe hexanucléaire chiral de manganèse(III) révèle un comportement SMM avec une barrière d’énergie de la relaxation lente de l’aimantation égale à 35 K. Prenant en compte les caractéristiques structurales, la variation thermique de la susceptibilité magnétique donne un bon accord avec les données expérimentales en considérant une interaction J1 = +0,37 cm−1 dans les sous-unités triangulaires {Mn33-O)(5-Me-salox)3(S-mandélato)(EtOH)3} et une interaction antiferromagnétique J2 = −0,70 cm−1 entre les deux sous-unités.

Compléments :
Des compléments sont fournis pour cet article dans les fichiers suivants :

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2012.06.013
Keywords: Manganese(III), Chiral, Salicylaldoxime, Mandelic acid, Magnetism, Single-molecule magnets
Mots clés : Manganèse(III), Chiral, Salicylaldoxime, Acide mandélique, Magnétisme, Molécule-aimant

Ghenadie Novitchi 1, 2 ; Guillaume Pilet 1 ; Dominique Luneau 1

1 Université Claude-Bernard Lyon-1, laboratoire des multimatériaux et interfaces, UMR 5615, campus de la Doua, 69622 Villeurbanne, France
2 Laboratoire national des champs magnétiques intenses, CNRS UPR 3228, 25, rue des Martyrs, 38042 Grenoble, France
@article{CRCHIM_2012__15_10_937_0,
     author = {Ghenadie Novitchi and Guillaume Pilet and Dominique Luneau},
     title = {Chiral single-molecule magnet with a {35\hspace{0.25em}K} energy barrier for relaxation of the magnetization},
     journal = {Comptes Rendus. Chimie},
     pages = {937--942},
     publisher = {Elsevier},
     volume = {15},
     number = {10},
     year = {2012},
     doi = {10.1016/j.crci.2012.06.013},
     language = {en},
}
TY  - JOUR
AU  - Ghenadie Novitchi
AU  - Guillaume Pilet
AU  - Dominique Luneau
TI  - Chiral single-molecule magnet with a 35 K energy barrier for relaxation of the magnetization
JO  - Comptes Rendus. Chimie
PY  - 2012
SP  - 937
EP  - 942
VL  - 15
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crci.2012.06.013
LA  - en
ID  - CRCHIM_2012__15_10_937_0
ER  - 
%0 Journal Article
%A Ghenadie Novitchi
%A Guillaume Pilet
%A Dominique Luneau
%T Chiral single-molecule magnet with a 35 K energy barrier for relaxation of the magnetization
%J Comptes Rendus. Chimie
%D 2012
%P 937-942
%V 15
%N 10
%I Elsevier
%R 10.1016/j.crci.2012.06.013
%G en
%F CRCHIM_2012__15_10_937_0
Ghenadie Novitchi; Guillaume Pilet; Dominique Luneau. Chiral single-molecule magnet with a 35 K energy barrier for relaxation of the magnetization. Comptes Rendus. Chimie, Volume 15 (2012) no. 10, pp. 937-942. doi : 10.1016/j.crci.2012.06.013. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2012.06.013/

Version originale du texte intégral

1 Introduction

In the last two decades, polynuclear transition metal complexes with large ground spin states (S) and a large zero-field splitting parameter (D) that exhibit Single-Molecule Magnet (SMM) or Single-Chain Magnet (SCM) behaviour have attracted much attention [1–5]. Among the numerous SMM that have been reported, many are based on complexes of manganese mostly in a +III oxidation state or in mixed valence systems, such as the emblematic Mn12Ac [6–11] or the Mn6 [12–15] oximes series that exhibit the highest energy barrier for the reversal of magnetisation. The energy barrier is S2|D| for an integer spin and (S2 - 1/4)|D| for a half-integer spin. Thus the size of the ground spin state S is important but, in order to elaborate a SMM, a negative zero-field-splitting parameter (D) is the main requirement. Thanks to early works on magnetic interactions the relationships between structural parameters and the size of the resultant spin state (S) in polynuclear complexes are quite well understood [16]. This is not yet the case for the factors that govern the strength of the axial magnetic anisotropy and most recent studies are focused on efforts to understand what determines why a complex displays or not a SMM behaviour [17–22]. Different families of manganese clusters have been concerned by such studies; especially noticeable is the Mn6 oximes series for which structural correlation has been found [12–15,23]. However, spin chirality effects have been pointed out [24–27] and the stereo-chemical aspect of chiral SMM has been recently addressed in several publications [28–33]. In continuity with our previous work [27,34], we present here a chiral hexanuclear manganese(III) complex exhibiting SMM behaviour with an energy barrier of slow magnetic relaxation equal to 35 K.

The chiral Mn6 cluster was prepared by reaction of MnII S-mandelato complexes [35–37] [MnII(S-mandelato)2] with 5-methyl-salicylaldoximes (5-Me-saloxH2) in presence of Et3N in ethanol solution.

2 Experimental

All starting materials and solvents were purchased from Aldrich and were used without further purification. IR spectra were recorded on a GX system 2000 Perkin-Elmer spectrophotometer and samples were run as KBr pellets. The Circular Dichroism (CD) spectra were recorded on a Chirascan spectropolarimeter using Chirascan software (Applied Biophysics Ltd., Leatherhead, UK) in KBr pellets.

2.1 Synthesis

To a suspension of MnII S-mandelato complex [35–37] (0.1 g), and 5-Methyl-salicylaldoxim (5-Me-saloxH2) (0.25 g) in EtOH (20 mL) was added NEt3 (0.05 g). The resulting solution was stirred at 60 °C during 2 h. After cooling the color changed to green and the resulting suspension was left upon stirring for 1 h and then filtered. The green solution was left to crystallize by slow evaporation of the solvent. After 3 days dark–brown single crystals suitable for X-ray crystallography analyses were collected by filtration and washed with ether. Yield: 20%. Anal.Calcd (found) for 1: C 49.74 (50.31), H 5.05 (5.32), N 4.58 (4.37).

2.2 Single-crystal X-ray diffraction

Crystal data were collected at low temperature (T = 110 K) using a Geminini Oxford Diffractometer (Mo radiation, λ = 0.71069 Ǻ) equipped with a CCD camera and using the related software [38]. An absorption correction (analytical) has been applied to all the data sets [39]. The structure was solved by direct methods using the SIR97 program [40] combined with Fourier Difference and the refined against F using the CRYSTALS program [I > 2σ(I)] [41]. All atomic displacements for non-hydrogen atoms were refined using an anisotropic model. Hydrogen atoms have been placed by Fourier Difference accounting for the hybridation of the supporting atoms and the possible presence of hydrogen bonds in the case of donor atoms. Hydrogen atoms have been refined using a riding mode. The Flack parameter has been refined in order to evidence the presence of an enantiopure complex [41]. Details of data collection parameters and crystallographic information for the [Mn6] complex can be found in Table 1. Important bond lengths, bond angles and Mn⋯Mn distances are summarized in Table 2. CCDC 865130 reference contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 1

Data collection details and structure refinement results for 1.

1
Empirical formulaC76H92Mn6N6O26
Molecular weight (g mol−1)1835.16
Crystal systemMonoclinic
Space groupP21
a (Å)12.6053(9)
b (Å)20.633(2)
c (Å)15.523(1)
β (deg.)96.134(7)
V3)4014.1(5)
Z2
T (K)110
d1.518
μ (mm−1)0.997
F(000)1896
Independent refl.19000
Rint0.097
R(F) / Rw(F)0.0727 / 0.0846
S1.10
Reflections11223
Parameters / restraints1028 / 97
Δρmax / Δρmin (e Å−3)0.90 / −0.63
Flack parameter0.02(3)
Absorption correctionAnalytical
Table 2

Important Mn-O,N bond lengths (Å), Mn-O,N-Mn angles (deg.) and Mn⋯Mn distances (Å).

Mn–O,N bond lengths
Mn1-1812.229(8)Mn1-O1912.293(7)Mn1-O2211.894(6)
Mn1-0911.920(6)Mn1-O1011.851(7)Mn1-N1102.015(7)
Mn2-O312.339(6)Mn2-O711.955(6)Mn2-N901.993(8)
Mn2-O1412.112(7)Mn2-O2211.885(5)Mn2-O811.917(5)
Mn3-O412.525(7)Mn3-O611.860(6)Mn3-N702.033(7)
Mn3-O1111.913(6)Mn3-O2012.172(8)Mn3-O2211.888(5)
Mn4-O311.963(5)Mn4-O411.893(5)Mn4-N501.986(7)
Mn4-O712.322(6)Mn4-O1212.139(8)Mn4-O2221.873(5)
Mn5-O11.859(7)Mn5-N102.002(6)Mn5-O1712.298(9)
Mn5-O511.924(6)Mn5-O2112.269(9)Mn5-O2221.904(6)
Mn6-O111.897(6)Mn6-O211.848(6)Mn6-N302.004(7)
Mn6-O812.591(6)Mn6-O1612.286(7)Mn6-O2221.865(5)
Intra-triangle Mn⋯Mn distances
Mn1⋯Mn23.262(1)Mn1⋯Mn33.262(1)Mn2⋯Mn33.280(1)
Mn4⋯Mn53.243(1)Mn4⋯Mn63.261(1)Mn5⋯Mn63.266(1)
Inter-triangle Mn⋯Mn distances
Mn2⋯Mn43.228(1)Mn3⋯Mn43.786(1)Mn2⋯Mn63.811(1)
Mn-N,O-Mn angles
Mn1-O221-Mn2119.3(3)Mn1-O221-Mn3119.2(3)Mn2-O221-Mn3120.7(3)
Mn4-O222-Mn6121.5(3)Mn4-O222-Mn5118.3(3)Mn6-O222-Mn5120.1(3)

2.3 Magnetic susceptibility

Magnetic susceptibility data (2–300 K) were collected on powdered polycrystalline samples on a Quantum Design MPMS-XL SQUID magnetometer under an applied magnetic field of 0.1 T. Ac measurements were performed in the 1.8–10 K range using a 2.7 G ac field oscillation in 1–1500 Hz range. Magnetization isotherms were collected at 2 K between 0 and 5 T. All data were corrected for the contribution of the sample holder and the diamagnetism of the samples estimated from Pascal's constants [42]. The magnetic susceptibilities have been computed by exact calculations of the energy levels associated to the spin-Hamiltonian through diagonalization of the full matrix with the MAGPACK program package [43,44]. The fitting procedure for AC susceptibility was carried out with an adapted version of Visualiseur-Optimiseur for Matlab® [45,46] using a Lavenberg-Marquard nonlinear least-squares algorithm.

3 Results and discussion

The refined formula for the complex is [Mn63-O)2(5-Me-salox)6(S-mandelato)2(EtOH)6] (Fig. 1) and it crystallizes in the P21 non-centrosymetrical space group (monoclinic system). The Flack parameter has been refined to 0.02(3) confirming the presence of only one enantiomer in the structure.

Fig. 1

a: molecular structure of chiral [Mn63-O)2(5-Me-salox)6(S-mandelato)2(EtOH)6] cluster (hydrogen atoms have been omitted for clarity); b: two {Mn33-O)(5-Me-salox)3(S-mandelato)(EtOH)3} triangular subunits linked together in a head-to-tail manner.

The structure can be viewed as two off-set, neutral stacked {Mn33-O)(5-Me-salox)3(S-mandelato)(EtOH)3} triangular subunits (Fig. 1) positioned in a head-to-tail manner, and linked together by two phenoxo and two oximo μ3-oxygen atoms belonging to the four double deprotonated oxim groups of the two 5-Methyl-salicylaldoxim ligands. Within each subunit, manganese ions are connected together in a triangular manner by μ3-oxygen atoms. Intra-triangle Mn⋯Mn distances are homogenous, ranging from 3.243(1) Å to 3.281(1) Å (average: 3.262 Å), and are shorter than inter-triangle ones (ranging from 3.228(1) Å to 3.811(1) Å, average: 3.608 Å). Mn-O,N-Mn angles are also homogenous ranging from 119.2(3)° to 121.5(3)°.

All manganese ions are in the +III oxidation state as confirmed by the combination of bond length considerations, BVS calculations [47–49] and charge balance. All MnIII ions display a more or less distorted six-coordinate octahedral geometry associated to a Jahn-Teller elongation. Mn-O,N bond lengths in the square base of the pyramidal environment range from 1.851(7) Å to 2.015(7) Å while Mn-O,N bond lengths along the perpendicular axis range from 2.112(7) Å to 2.591(6) Å. All these Mn-O-Mn angles, Mn⋯Mn distances and Mn-O,N bond lengths are in good agreement with what has been observed previously [14,50–53].

The shortest center to center distance between two neighbouring [Mn6] clusters is equal to 12.6 Å, which indicates that the inter-cluster magnetic interaction can be neglected.

In order to claim the complex enantiopurity, solid-state circular dichroism (CD) (KBr pellets) measurements in absorption mode were performed on crystals of 1 (Fig. S1).

The small intensity CD signals at 600 cm−1 probably correspond to d-d transition generated by C4v octahedral distortion ligand field of MnIII. The more intensive CD signals 520 and 353 cm−1 can be assignment to d-π* and π-π* transitions of the aromatic system.

The results of magnetic susceptibility measurements on the polycrystalline cluster 1 are depicted in Fig. 2. For the chiral [Mn6] (1), at room temperature, the χT product is 17.75 cm3 K mol−1. This value is close to the expected one (18.00 cm3 K mol−1) for six MnIII ions (3.00 cm3 K mol−1, S = 2, g = 2). Upon decreasing the temperature, the χT product at 0.1T continuously increases and reaches 21.90 cm3 K mol−1 at 8.0 K. After 8 K, the χT product decreases rapidly and takes the value of 16.69 cm3 K mol−1 at 2.0 K. The χT evolution indicates the presence of dominant ferromagnetic interactions within the hexanuclear complex.

Fig. 2

Magnetic susceptibility χT versus T plots data for [Mn63-O)2(5-Me-salox)6(S-mandelato)2(EtOH)6] (1). The black solid line corresponds to the best fit according to the retained model (see figure and text).

According to the structural features of 1 and to previous magnetostructural studies in Mn6 family, the temperature dependence of the magnetic susceptibility can be calculated using the general spin-Hamiltonian which describes the isotropic exchange interactions in hexanuclear cluster [54].

H=2J1S1S2+S1S3+S1S4++S1S6+S3S6+S4S6+S5S62J2S2S3+S5S6
J1 and J2 are the exchange parameters and Si = 2 are the MnIII spins (Si = 2). The best agreement between theory and experiment corresponds to the following parameters: J1 = +0.37 cm−1, J2 = −0.70 cm−1, g = 1.98. These values are in agreement with previous findings [15,54].

The experimental values of magnetization at 2,3,4 and 5 K for Mn6 (1) are shown in Fig. S2. The field evolution of magnetization is typical for presence of magnetic anisotropy due to negative ZFS parameters generated by MnIII Jahn-Teller distortion [5,55] and is consistent with a previously published SMM Mn6 family [12–15]. The small magnetic interaction values indicate the possibility of “intermediate” spin ground states which can vary from 4 to 12 [12,50,54,56]. The large versatility of fundamental spin states in Mn6 oxime systems clearly demonstrates a magnetostructural correlation with the torsion angles of the oxime ligand [12,54–56].

Regarding the ac magnetic susceptibility (Hdc = 0) for 1 a strong temperature and frequency dependence of out-of-phase χ” is observed. (Fig. 3 and Fig. S3) We have used the two measuring procedures, the frequency-scan (Fig. 3) and the temperature-scan method (Fig. S3) in order to analyze the relaxation behaviour of the Mn6 compound (1). According to the Glauber's theory [57], the thermal variation of τ is described by the Arrhenius expression:

τT=τ0expUeffkBT(1)

Fig. 3

Frequency dependence of out-of-phase χ” (a) and in-phase χ’ (b) susceptibilities at Hdc = 0, Hac = 2.7 Oe; c: Cole-Cole plot for the same data. The solid line is a least-square fitting of the ac data to a single relaxation process as described by generalized Debye model (Eqs (2) and (3)).

The best fit of both data sets (temperature-scan and frequency-scan) gives an effective energy barrier Ueff = 35.3 K and a relaxation time τ0 = 2.7 × 10−9 s (Fig. 4).

Fig. 4

Arrhenius plot for 1 data on a microcrystalline sample. The green points (light grey) are extracted from frequency-scan and the blue points (dark grey) from temperature-scan. The solid line is the best fit of the both data sets by Eq. (1) (Ueff = 35.3 K, τ0 = 2.7 × 10−9 s).

The complex susceptibility can be phenomenological expressed by generalized Debye model (Eqs. (2) and (3)). The Cole-Cole plots [1,58], and the best fits of in-phase and out-of-phase susceptibilities are reported in Fig. 3. Relatively large values were found for α (0.08–0.33). This indicates that more than one relaxation process might be operating here in correlation with the small magnetic interaction values and the possibility of “intermediate” spin ground states.

χvac=χ+χ0χ1+2πvacτ1αsinαπ/21+22πvacτ1αsinαπ/2+2πvacτ21α(2)
χvac=χ0χ1+2πvacτ1αcosαπ/21+22πvacτ1αsinαπ/2+2πvacτ21α(3)

Such magnetic behavior of 1, characteristic of SMM, is also confirmed by the presence of a hysteresis loop with a 230 Oe coercivity field at 1.8 K (Fig. 5).

Fig. 5

Hysteresis of 1 at 1.8 K.

4 Conclusion

In conclusion by reacting a chiral MnII S-mandelato compound with 5-methyl-salicylaldoxime in a basic solution as starting material, the new chiral MnIII6 cluster has been synthesized and characterized. X-ray analysis confirms a non centrosymmetrical (monoclinic, P21 (no. 4)) structural organization with a refined Flack parameter close to zero. The chirality of bulk material was also proved by circular dichroism spectroscopy in solid state. According to the magnetic measurements, Mn6 represents an enantiopure compound that exhibits SMM properties with an energy barrier of slow magnetic relaxation equal to 35 K.

Acknowledgements

G. Novitchi is grateful to the EU FP-7 for a Marie Curie International Incoming Fellowship.


Bibliographie

[1] D. Gatteschi; R. Sessoli; J. Villain Molecular Nanomagnets, Oxford University Press, Oxford, 2006

[2] D. Gatteschi; R. Sessoli Angew. Chem. Int. Ed., 42 (2003), p. 268

[3] L. Thomas; F. Lionti; R. Ballou; D. Gatteschi; R. Sessoli; B. Barbara Nature, 383 (1996), p. 145

[4] R. Sessoli; D. Gatteschi; A. Caneschi; M.A. Novak Nature, 365 (1993), p. 141

[5] G. Aromi; E.K. Brechin Synthesis of 3d metallic single-molecule magnets. In: Single-Molecule Magnets and Related Phenomena, Springer-Verlag Berlin, Berlin, 2006 (Vol. 122, pp. 1–67)

[6] R. Sessoli; H.L. Tsai; A.R. Schake; S.Y. Wang; J.B. Vincent; K. Folting; D. Gatteschi; G. Christou; D.N. Hendrickson J. Am. Chem. Soc., 115 (1993), p. 1804

[7] C. Boskovic; E.K. Brechin; W.E. Streib; K. Folting; J.C. Bollinger; D.N. Hendrickson; G. Christou J. Am. Chem. Soc., 124 (2002), p. 3725

[8] M. Murugesu; W. Wernsdorfer; K.A. Abboud; E.K. Brechin; G. Christou Dalton Transactions (2006), p. 2285

[9] M. Soler; S.K. Chandra; D. Ruiz; E.R. Davidson; D.N. Hendrickson; G. Christou Chem. Commun. (2000), p. 2417

[10] R. Bagai; G. Christou Chem. Soc. Rev., 38 (2009), p. 1011

[11] E. del Barco; A.D. Kent; E.M. Rumberger; D.N. Hendrickson; G. Christou Europhys. Lett., 60 (2002), p. 768

[12] C.J. Milios; A. Vinslava; W. Wernsdorfer; A. Prescimone; P.A. Wood; S. Parsons; S.P. Perlepes; G. Christou; E.K. Brechin J. Am. Chem. Soc., 129 (2007), p. 6547

[13] C.J. Milios; A. Vinslava; W. Wernsdorfer; S. Moggach; S. Parsons; S.P. Perlepes; G. Christou; E.K. Brechin J. Am. Chem. Soc., 129 (2007), p. 2754

[14] C.J. Milios; R. Inglis; R. Bagai; W. Wernsdorfer; A. Collins; S. Moggach; S. Parsons; S.P. Perlepes; G. Christou; E.K. Brechin Chem. Commun. (2007), p. 3476

[15] R. Inglis; L.F. Jones; C.J. Milios; S. Datta; A. Collins; S. Parsons; W. Wernsdorfer; S. Hill; S.P. Perlepes; S. Piligkos; E.K. Brechin Dalton Transactions (2009), p. 3403

[16] O. Kahn Molecular Magnetism, VCH Publishers, Inc, New York, Weinheim, Cambridge, 1993

[17] R. Sessoli; A.K. Powell Coord. Chem. Rev., 253 (2009), p. 2328

[18] T. Glaser; I. Liratzis; A.M. Ako; A.K. Powell Coord. Chem. Rev., 253 (2009), p. 2296

[19] R.E.P. Winpenny Chem. Soc. Rev., 27 (1998), p. 447

[20] L.F. Chibotaru; L. Ungur; C. Aronica; H. Elmoll; G. Pilet; D. Luneau J. Am. Chem. Soc., 130 (2008), p. 12445

[21] M. Andruh; J.P. Costes; C. Diaz; S. Gao Inorg. Chem., 48 (2009), p. 3342

[22] A. Borta; B. Gillon; A. Gukasov; A. Cousson; D. Luneau; E. Jeanneau; I. Ciumacov; H. Sakiyama; K. Tone; M. Mikuriya Phys. Rev. B, 83 (2011), p. 184429

[23] Y.Q. Zhang; C.L. Luo Dalton Transactions (2009), p. 5627

[24] L.F. Chibotaru; L. Ungur; A. Soncini Angew. Chem. Int. Ed., 47 (2008), p. 4126

[25] J. Luzon; K. Bernot; I.J. Hewitt; C.E. Anson; A.K. Powell; R. Sessoli Phys. Rev. Lett., 100 (2008), p. 247205

[26] J.K. Tang; I. Hewitt; N.T. Madhu; G. Chastanet; W. Wernsdorfer; C.E. Anson; C. Benelli; R. Sessoli; A.K. Powell Angew. Chem. Int. Ed., 45 (2006), p. 1729

[27] G. Novitchi; G. Pilet; L. Ungur; V.V. Moshchalkov; W. Wernsdorfer; L.F. Chibotaru; D. Luneau; A.K. Powell Chem. Sci., 3 (2012), p. 1169

[28] C.M. Zaleski; E.C. Depperman; J.W. Kampf; M.L. Kirk; V.L. Pecoraro Inorg. Chem., 45 (2006), p. 10022

[29] R. Inglis; F. White; S. Piligkos; W. Wernsdorfer; E.K. Brechin; G.S. Papaefstathiou Chem. Commun., 47 (2011), p. 3090

[30] M. Gruselle; R. Andres; B. Malezieux; M. Brissard; C. Train; M. Verdaguer Chirality, 13 (2001), p. 712

[31] E. Pardo; C. Train; R. Lescouezec; Y. Journaux; J. Pasan; C. Ruiz-Perez; F.S. Delgado; R. Ruiz-Garcia; F. Lloret; C. Paulsen Chem. Commun., 46 (2011), p. 2322

[32] L.L. Fan; F.S. Guo; L. Yun; Z.J. Lin; R. Herchel; J.D. Leng; Y.C. Ou; M.L. Tong Dalton Trans., 39 (2010), p. 1771

[33] N. Hoshino; Y. Sekine; M. Nihei; H. Oshio Chem. Commun., 46 (2010), p. 6117

[34] G. Novitchi; G. Pilet; D. Luneau Eur. J. Inorg. Chem. (2011), p. 4869

[35] A. Beghidja; P. Rabu; G. Rogez; R. Welter Chem. A Eur. J., 12 (2006), p. 7627

[36] A. Beghidja; G. Rogez; P. Rabu; R. Welter; M. Drillon J. Mater. Chem., 16 (2006), p. 2715

[37] A. Beghidja; R. Welter; P. Rabu; G. Rogez Inorg. Chim. Acta, 360 (2007), p. 1111

[38] CrysAlisPro, version 1.171.34.40 (rel. 27-08-2010, CrysAlis171. NET), Oxford Diffraction Ltd.

[39] O.D.L. CrysAlisPro, Version 1.171.34.40 (rel. 27-08-2010, CrysAlis171.NET), (compiled Aug. 27, 2010, 11:50:40). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by: R.C. Clark, J.S. Reid, Acta Crystallogr. Sect. A 51 (1995) 887.

[40] A. Altomare; M.C. Burla; M. Camalli; G.L. Cascarano; C. Giacovazzo; A. Guagliardi; A.G.G. Moliterni; G. Polidori; R. Spagna J. App. Cryst., 32 (1999), pp. 115-119

[41] D. Watkin, C. Prout, J. Carruthers, P. Betteridge, CRISTAL Issue 11. In Chemical Crystallography Laboratory, Oxford, UK, 1999.

[42] P. Pascal Ann. Chim. Phys., 19 (1910), p. 5

[43] J.J. Borras-Almenar; J.M. Clemente-Juan; E. Coronado; B.S. Tsukerblat J. Comp. Chem., 22 (2001), p. 985

[44] J.J. Borras-Almenar; J.M. Clemente-Juan; E. Coronado; B.S. Tsukerblat Inorg. Chem., 38 (1999), p. 6081

[45] MATLAB, The MathWorks Inc., 2000.

[46] F. Yerly, Visualiseur-Optimiseur, Lausanne, Switzerland, 2003.

[47] N.E. Brese; M. O’Keeffe Acta Cryst., B47 (1991), p. 192

[48] I.D. Brown; D. Altermatt Acta Cryst., B41 (1985), p. 244

[49] H.H. Thorp Inorg. Chem., 31 (1992), p. 1585

[50] C.J. Milios; R. Inglis; A. Vinslava; A. Prescimone; S. Parsons; S.P. Perlepes; G. Christou; E.K. Brechin Chem. Commun. (2007), p. 2738

[51] A. Prescimone; C.J. Milios; S. Moggach; J.E. Warren; A.R. Lennie; J. Sanchez-Benitez; K. Kamenev; R. Bircher; M. Murrie; S. Parsons; E.K. Brechin Angew. Chem. Int. Ed., 47 (2008), p. 2828

[52] J. Cano; T. Cauchy; E. Ruiz; C.J. Milios; C.C. Stoumpos; T.C. Stamatatos; S.P. Perlepes; G. Christou; E.K. Brechin Dalton Trans. (2008), p. 234

[53] C.L. Zhou; Z.M. Wang; B.W. Wang; S. Gao Polyhedron, 30 (2011), p. 3279

[54] C.J. Milios; R. Inglis; A. Vinslava; R. Bagai; W. Wernsdorfer; S. Parsons; S.P. Perlepes; G. Christou; E.K. Brechin J. Am. Chem. Soc., 129 (2007), p. 12505

[55] M. Atanasov; B. Delley; F. Neese; P.L. Tregenna-Piggott; M. Sigrist Inorg. Chem., 50 (2011), p. 2112

[56] E. Cremades; J. Cano; E. Ruiz; G. Rajaraman; C.J. Milios; E.K. Brechin Inorg. Chem., 48 (2009), p. 8012

[57] R.J. Glauber J. Math. Phys., 4 (1963), p. 293

[58] K.S. Cole; R.H. Cole J. Chem. Phys., 9 (1941), p. 341


Commentaires - Politique