Plan
Comptes Rendus

Geomaterials (Mineralogy)
Geochemical and microbiological controls on dissimilatory iron reduction
[Contrôles géochimique et microbiologique de la réduction dissimilatrice du fer]
Comptes Rendus. Géoscience, Les hydroxydes ferrosiques, les rouilles vertes et la fougérite dans le cycle biogéochimique du fer, Volume 338 (2006) no. 6-7, pp. 456-467.

Résumés

Recent experimental studies permit development of conceptual and quantitative models of microbial Fe(III) oxide reduction at circumneutral pH that can be compared to and contrasted with established models of abiotic mineral dissolution. The findings collectively support a model for controls on enzymatic reduction that differs fundamentally from those applied to abiotic reductive dissolution as a result of two basic phenomena: (1) the relatively minor influence of oxide mineralogical and thermodynamic properties on rates of enzymatic reduction compared to abiotic reductive dissolution, and (2) the major limitation which sorption and/or surface precipitation of biogenic Fe(II) on residual oxide and Fe(III)-reducing bacterial cell surfaces poses to enzymatic electron transfer in the presence of excess electron donor. Parallel studies with two well-characterized Fe(III)-reducing organisms (Shewanella putrefaciens and Geobacter sulfurreducens) lead to common conclusions regarding the importance of these phenomena in regulating the rate and long-term extent of Fe(III) oxide reduction. Models in which rates of enzymatic reduction are limited by Fe(III)-reducing bacterial cell density together with the abundance of ‘available’ oxide surface sites (as controlled by oxide surface area and the accumulation of surface-bound biogenic Fe(II)) provide an adequate macroscopic description of controls on the initial rate and long-term extent of oxide reduction.

Des études expérimentales récentes conduisent à l'établissement de modèles quantitatifs de la réduction microbienne des oxydes ferriques à pH neutre, qui peuvent être comparés et doivent être contrastés avec ceux qui décrivent classiquement la dissolution abiotique de ces mêmes minéraux. Les observations convergent pour établir que les différences entre ces deux familles de modèles ont pour cause les deux phénomènes fondamentaux suivants : (i) l'influence relativement mineure de la nature minéralogique et donc des propriétés thermodynamiques de oxydes de fer impliqués sur les vitesses de dissolution observées lorsque la dissolution se réalise par voie enzymatique et (ii) la limitation majeure qu'impose la précipitation et/ou l'absorption du feu biogénique sur les oxydes ferriques résiduels et les cellules bactériennes, lorsque les transferts d'électrons liés à la voie enzymatique ont lieu en présence d'un excès de donneurs d'électrons. Des expériences semblables réalisées avec deux souches bien caractérisées de bactéries ferriréductrices (Shewanella putrefaciens et Geobacter sulfurreducens) montrent que, sur le long terme également, les mêmes phénomènes régulent tant la vitesse que l'importance de la réduction des oxydes ferriques. Il en résulte que les modèles basés sur les limitations imposées à la vitesse de réduction par la densité de cellules bactériennes et l'abondance des sites disponibles sur la surface « accessible » des oxydes ferriques (elle-même contrôlée par la surface spécifique de ces oxydes et par l'accumulation sur cette surface des cations FeII d'origine biologique) fournissent une description macroscopique adéquate des paramètres contrôlant, tant la vitesse initiale de la réduction des oxydes ferriques, que son importance sur le long terme.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crte.2006.04.009
Keywords: Iron oxides, Rate of enzymatic reduction, Dissimilatory iron-reducing bacteria
Mots-clés : Oxydes de fer, Vitesse de réduction enzymatique, Bactéries ferriréductrices

Eric E. Roden 1

1 University of Wisconsin, Department of Geology and Geophysics, Madison, WI 53706, USA
@article{CRGEOS_2006__338_6-7_456_0,
     author = {Eric E. Roden},
     title = {Geochemical and microbiological controls on dissimilatory iron reduction},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {456--467},
     publisher = {Elsevier},
     volume = {338},
     number = {6-7},
     year = {2006},
     doi = {10.1016/j.crte.2006.04.009},
     language = {en},
}
TY  - JOUR
AU  - Eric E. Roden
TI  - Geochemical and microbiological controls on dissimilatory iron reduction
JO  - Comptes Rendus. Géoscience
PY  - 2006
SP  - 456
EP  - 467
VL  - 338
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crte.2006.04.009
LA  - en
ID  - CRGEOS_2006__338_6-7_456_0
ER  - 
%0 Journal Article
%A Eric E. Roden
%T Geochemical and microbiological controls on dissimilatory iron reduction
%J Comptes Rendus. Géoscience
%D 2006
%P 456-467
%V 338
%N 6-7
%I Elsevier
%R 10.1016/j.crte.2006.04.009
%G en
%F CRGEOS_2006__338_6-7_456_0
Eric E. Roden. Geochemical and microbiological controls on dissimilatory iron reduction. Comptes Rendus. Géoscience, Les hydroxydes ferrosiques, les rouilles vertes et la fougérite dans le cycle biogéochimique du fer, Volume 338 (2006) no. 6-7, pp. 456-467. doi : 10.1016/j.crte.2006.04.009. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2006.04.009/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

The redox cycling of Fe plays a major role in the biogeochemical cycling of many elements in natural systems [9,51]. On the reductive side of the Fe redox cycle, dissimilatory microbial (enzymatic) reduction of Fe(III) oxides has a major impact on the aqueous/solid-phase geochemistry and behavior of natural and contaminant compounds in nonsulfidogenic subsurface sedimentary environments. As a result of the pivotal role of bacterial Fe(III) oxide reduction in surficial and subsurface sediment biogeochemistry, there is great interest in the factors that control the rate and long-term degree of enzymatic Fe(III) oxide reduction. The rate and extent of Fe(III) oxide reduction are governed by complex surface-chemical and physiological interactions which are as yet only poorly characterized [44]. Development of a mechanistic understanding the geochemical and microbiological controls on microbial reduction of soluble and solid-phase metals is a prerequisite for development of reactive transport models of inorganic contaminants and radionuclides in saturated subsurface environments [8]. The studies summarized here explored how the surface chemical (e.g., specific surface area) and thermodynamic properties (e.g., oxide reduction potential) of different Fe(III) oxides influence the rate and extent of bacterial (versus chemical) Fe(III) oxide reduction. The results permit development of conceptual and quantitative models of enzymatic Fe(III) oxide reduction at circumneutral pH that can be compared and contrasted with models of abiotic mineral dissolution and enzymatic soluble metal reduction.

2 Materials and methods

2.1 Fe(III) oxide phases

The Fe(III) oxides employed in this study included a variety of pure synthetic phases [40] as well as three previously characterized Fe(III) oxide-bearing subsoil or subsurface materials (HC, CP, and Oyster). The synthetic oxides were prepared according to standard methods [50]. The HC and CP natural materials are Fe(III) oxide/layered silicate mixtures obtained from Ultisols in Tennessee and North Carolina, respectively. The Oyster material is Fe(III) oxide-coated sand from Pleistocene Age Atlantic Coastal Plain sediments. More detailed descriptions of the properties of these materials are available elsewhere [42,54,55]. The synthetic Fe(III) oxides were freeze-dried and passed through a 100-μm sieve, and their specific surface area determined by multipoint BET N2 adsorption. The natural materials were air dried and passed through a 2-mm sieve prior to use in experiments.

2.2 Fe(III)-reducing microorganisms

Two well-characterized dissimilatory Fe(III)-reducing bacteria (FeRB) were employed in Fe(III) reduction experiments, Shewanella putrefaciens strain CN32 [14], and Geobacter sulfurreducens strain PCA [3,31]. The procedures used for growth and handling of these organisms for Fe(III) reduction experiments are described in detail in Roden [40] and Jeon et al. [19], respectively.

2.3 Bacterial reduction experiments

The synthetic and natural Fe(III) oxide-bearing solids were suspended in sterile, anaerobic Pipes buffer (10 mM, pH 6.8) contained in sealed serum vials to obtain Fe(III) concentrations of 5 to 250 mmol l−1. Other experiments were conducted with soluble Fe(III) citrate as an electron acceptor. The electron donor for metal reduction was either 100% H2 in the vial headspace, or 10 mM of either sodium lactate or sodium acetate. The medium was inoculated with ca. 108 cells ml−1 of either S. putrefaciens or Geobacter sulfurreducens cells. Samples for determination of dissolved (0.2-μm filtration and Ferrozine analysis) and total Fe(II) (0.5M HCl extraction and Ferrozine analysis) and pH were collected at 1–10-d intervals.

2.4 Ascorbate and AH2DS reduction experiments

Table 1

Characteristics of synthetic Fe(III) oxides used in studies of microbial and abiotic reduction experiments. Modified with permission from Table 1 in Roden [40], with kind permission of the American Chemical Society

Caractéristiques des oxydes de fer synthétiques, utilisés pour les expériences de Fe(III) réduction bactérienne et abiotique. Modifié d'après le Tableau 1 de Roden [40], et reproduit ici avec l'aimable autorisation de l'American Chemical Society

Oxide Assumed morphologya % HA–Ext Fe(III)b Surface areac (m2 g−1) Estimated mean particle sized (nm) Eh0 (V)e
Hydrous ferric oxide sphere 100 ± 0 600 1.3 +1.230
2-line Ferrihydrite sphere 14.8 ± 0.2 290 2.6 +0.918
Feroxyhyte plate 3.61 ± 0.04 176 9.4 +0.888
Lepidocrocite cylinder 2.55 ± 0.05 63.6 26.7 +0.902
HSA Goethite 1 cylinder 1.75 ± 0.05 211 7.7 +0.844
HSA Goethite 2 cylinder 0.90 ± 0.03 135 12.1 +0.844
Goethite 7 °Cf cylinder 0.72 ± 0.01 96.3 16.9 +0.811
Goethite 20 °Cf cylinder 0.34 ± 0.01 73.0 22.4 +0.803
Goethite 30 °Cf cylinder 0.085 ± 0.003 62.0 26.3 +0.804
Goethite 90 °Cf cylinder 0.019 ± 0.001 37.6 43.4 +0.787
Mati hematite sphere 0.53 ± 0.11 18.8 30.3 +0.781
Fisher Hematite sphere 0.075 ± 0.005 10.3 55.4 +0.774

a For use in estimating mean particle size from measured surface area.

b 0.25M Hydroxylamine–HCl/0.25M HCl, 1-h extraction; mean ± SD of triplicate samples.

c Determined by multi-point BET N2 adsorption, except for HFO, for which the assumed value is based on discussions and recommendations in Dzombak and Morel [11].

d Estimated using the oxide densities listed in [6], and assuming the following proportions for plate and cylindrical and particle morphologies: plate diameter: thickness=10:1; cylinder length: diameter=10:1. Note that particle aggregation is ignored in these calculations.

e Half-cell reduction potentials (e.g., for reactions such as: FeOOH+3H++e=Fe2++2H2O) computed based on the results of abiotic AH2DS reduction experiments (see Section 2.4).

f Temperature refers to the temperature at which the mineral synthesis was conducted.

The synthetic and natural Fe(III) oxide-bearing solids were suspended in anaerobic 10 mM ascorbic acid or 10 mM AH2DS (the reduced form of AQDS, anthroquinone-2,6-disulfonate, prepared by reacting AQDS with 100% H2 gas in the presence of a palladium catalyst) in 10 mM Pipes buffer. The oxide suspensions were incubated at room temperature on a rotary shaker (250 rpm) and samples were removed with a N2-flushed plastic syringe at regular intervals. A portion of the sample was passed through a 0.2-μm filter into Ferrozine for Fe(II) analysis, and the remainder used for determination of pH. The final (after reduction ceased) dissolved Fe(II) concentration and pH values achieved in the AH2DS reduction experiments were used in conjunction with the Eh0 of the AQDS/AH2DS couple (+0.23 V) [5] to estimate the reduction potential (Eh0) of the synthetic Fe(III) oxide phases.

3 Results and discussion

3.1 Initial rates of reduction

Initial (0–3 d) surface area-specific rates of synthetic Fe(III) oxide reduction by S. putrefaciens and G. sulfurreducens did not vary systematically across a wide range of oxide surface area and Eh0 (Fig. 1A). In contrast, surface area-specific rates of abiotic Fe(III) oxide reduction by ascorbate and AH2DS were significantly correlated with oxide surface area and Eh0 (Fig. 1B). These results indicate that initial rates of bacterial Fe(III) oxide reduction are not strongly controlled by oxide crystal thermodynamic properties. An explicit illustration of the relative influence of oxide crystal structural properties on initial rates of biological vs. chemical reduction can be drawn from the results obtained with synthetic lepidocrocite (diamonds circled in Fig. 1). Lepidocrocite possesses a lower degree of crystal order (less negative ΔGf, higher Eh0) than goethites of comparable particle size and surface area [51]. Consequently, lepidocrocite yielded a ca. two-fold higher initial rate of bacterial reduction compared to goethites with similar surface areas (Fig. 1A). However, the effect on the rate of reductive dissolution by ascorbate or AH2DS was much more dramatic: lepidocrocite with a surface area of 64 m2 g−1 was reduced at a rate ca. two orders of magnitude greater than goethites with surface areas of 62 and 73 m2 g−1 (Fig. 1B).

Fig. 1

Initial (2–3-day incubation) surface area-specific rates of bacterial (A) and abiotic (B) reduction of synthetic Fe(III) oxides. Different symbols correspond to different Fe(III) oxide phases and reduction systems as indicated in the legend. The temperatures listed with the goethite phases correspond to the temperature at which the synthesis (from ferric nitrate) took place. Starting Fe(III) concentrations in the biotic and abiotic reduction experiments were 10 and 5 mmol l−1, respectively. S. putrefaciens and ascorbate reduction data are reproduced with permission from Fig. 4 in Roden [40]; G. sulfurreducens data are from Roden [41]Masquer

Initial (2–3-day incubation) surface area-specific rates of bacterial (A) and abiotic (B) reduction of synthetic Fe(III) oxides. Different symbols correspond to different Fe(III) oxide phases and reduction systems as indicated in the legend. The temperatures listed with the goethite phases ... Lire la suite

Vitesses initiales (incubations pendant 2–3 jours) rapportées à la surface spécifique de la réduction bactérienne d'oxydes ferriques de synthèse. Les différents symboles correspondent aux différents types d'oxydes et de modalités de réduction indiqués sur la figure. Les températures relatives aux goethites correspondent à leurs températures de synthèse (aux dépens de nitrate ferrique). Les concentrations initiales en FeIII dans les expériences de réduction bactérienne et abiotique étaient de 10 et de 5 mmol l−1 respectivement. Les données relatives aux expériences de réduction en présence de S. putrefaciens et d'ascorbate sont issues de la Fig. 4 de Roden [40], les données relatives à G. sulfurreducens de Roden [41]Masquer

Vitesses initiales (incubations pendant 2–3 jours) rapportées à la surface spécifique de la réduction bactérienne d'oxydes ferriques de synthèse. Les différents symboles correspondent aux différents types d'oxydes et de modalités de réduction indiqués sur la figure. Les températures relatives aux ... Lire la suite

Since detachment of a metal ion from an oxide surface site is generally viewed as the rate-limiting step in oxide mineral dissolution [52], it could be argued that because of the tendency for Fe(II) to reassociate (or never become detached in the first place) with oxide surfaces during enzymatic reduction at circumneutral pH (discussed in detail in Roden and Urrutia [47]), the kinetics of the enzymatic reduction system is not controlled by the presence of an obvious leaving group for which the detachment energy (related to the energy required for metal-ligand bond formation and breaking processes [1,47]) is affected by the thermodynamic properties of the oxide phase. However, during the bacterial Fe(III) oxide reduction experiments conducted under simplified aqueous geochemical conditions (i.e. in the absence of ions such as HCO3 and PO43, which can induce formation of Fe(II) surface precipitates, more than 65% of total (0.5M HCl-extractable) Fe(II) production was accounted for by aqueous Fe(II) accumulation (data not shown). Hence, enzymatic Fe(III) oxide reduction was mainly a reductive dissolution process in these experiments. If Fe(II) detachment from the oxide surface during enzymatic reduction was affected by the thermodynamic properties of the oxide and thus controlled the bulk reduction rate, we would have expected to see a significant correlation between initial surface area normalized reductive dissolution rate and oxide Eh0 – as was clearly the case for reductive dissolution by ascorbate and AH2DS. Since this was not the observed, we conclude that the mechanism and/or the rate-limiting step during enzymatic Fe(III) oxide reduction are fundamentally different than that for abiotic reductive dissolution. The simplest explanation is that the rate of electron transfer, rather than Fe(II) detachment, is the rate-limiting step during enzymatic reduction, and that rates of enzymatic electron transfer are not strongly affected by oxide thermodynamic properties.

Ongoing studies with Shewanella [10,12,32–35] and recent studies with Geobacter [24,29,30] have provided direct evidence that low redox potential, outer membrane-associated c-type cytochromes are involved in electron transfer from FeRB to Fe(III) oxides. In addition, a recent atomic force microscopy study by Lower et al. [28] demonstrated apparent molecular “recognition” of Fe(III) oxide surface sites by a putative ca. 150 kDa outer membrane protein of the dissimilatory FeRB Shewanella oneidensis (formerly S. putrefaciens strain MR-1), a close relative of the organism used in this study. Together these findings suggest the possibility that the similarity of surface area normalized electron transfer rates across a broad range of oxide minerals results from the fact that dissimilatory FeRB ‘recognize’ different Fe(III) oxide surfaces more or less equally independent of the underlying crystal structure, such that initial rates of electron transfer subsequent to recognition are not strongly dependent on crystal structure. This suggestion is consistent with an argument presented by Fischer [13] to account for the relatively minor influence of oxide solubility on rates of synthetic Fe(III) oxide reduction by Corynebacteria at pH 7. Fischer [13] reasoned that if the redox potential of the bacterial cells (i.e., their outer membrane c-type cytochromes) is sufficiently negative for reduction of well-crystallized oxide phases like hematite or goethite, each collision (or ‘recognition’) of a FeRB cell with an oxide particle will trigger reduction of a Fe(III) surface site. Therefore, the amount of Fe(II) produced during each collision event will not increase markedly with increasing oxide solubility.

3.2 Long-term extent of reduction

Similar patterns of Fe(II) accumulation were observed during long-term (3-week incubation) reduction of the various synthetic Fe(III) oxides by G. sulfurreducens (Fig. 2A): after an initial period of rapid Fe(II) accumulation, rates of reduction decreased and Fe(II) levels approached an asymptote. pH values correlated directly with aqueous Fe(II) concentrations during Fe(III) oxide reduction (Fig. 2B), as expected from the stoichiometry of Fe(III) oxide reduction coupled to H2 oxidation:

The measured pH values and aqueous Fe(II) concentrations were used together with the estimated Eh0 values for the different Fe(III) oxides, to compute the free energy of Fe(III) oxide reduction (ΔG values) for the different synthetic phases during the course of the long-term reduction experiments (Fig. 3). The results indicate that the cessation of oxide reduction activity cannot be attributed to free energy constraints posed by dissolved Fe(II) accumulation and pH increase, because reduction rates approached zero at ΔG values substantially lower than the theoretical minimum of ca. −20 kJ mol−1 required for energy conservation during biological energy metabolism [49]. The solid line in Fig. 3 corresponds to a standard transition state theory function that accounts for the influence of thermodynamic driving force on reaction rate [23], modified to account for the minimum free requirement for biological energy conservation as described in Liu et al. [26]. The experimental data clearly do not correspond to this function, in contrast to results obtained in studies of abiotic ligand-promoted dissolution of δ-Al2O3 and goethite [21]. Rather, both the total amount of Fe(II) generated and the amount of Fe(II) associated with oxide surfaces (referred to as ‘sorbed Fe(II)’) at the end of the reduction experiments correlated directly with the measured (BET) surface area of the mineral phases (Fig. 4), which suggests that accumulation of Fe(II) on oxide surfaces was responsible for cessation of oxide reduction activity. This conclusion is consistent with many previous studies of crystalline Fe(III) oxide reduction at circumneutral pH, and has be attributed to kinetic and/or thermodynamic impacts of surface-associated Fe(II) on enzymatic electron transfer, including impacts of Fe(II) sorption/surface precipitation on FeRB cell surfaces [47].

Fig. 2

Total (0.5 M HCl extraction) Fe(II) production (A) and relationship between pH and aqueous Fe(II) accumulation (B) during reduction of synthetic Fe(III) oxides by G. sulfurreducens (data from Roden [41]). Symbols as in Fig. 1. Lines in panel A show nonlinear regression fits of the data to the equation depicting the accumulation of end-product of a first-order reaction. Line in panel shows result of a linear least-square regression analysis.

Évolution des concentrations en FeII total (extrait par HCl 0,5 M) en fonction du temps (A) et relation entre pH et FeII total extrait (B) lors de la réduction d'oxydes de fer de synthèse par G. sulfurreducens [41]. Les symboles sont identiques à ceux de la Fig. 1. Dans la Fig. 2A, les traits pleins montrent l'ajustement des données de régression non linéaire à des équations décrivant l'accumulation des produits de la réaction selon une loi cinétique d'ordre 1. Le trait plein de la Fig. 2B résulte d'une analyse de régression linéaire par la méthode des moindres carrés. Masquer

Évolution des concentrations en FeII total (extrait par HCl 0,5 M) en fonction du temps (A) et relation entre pH et FeII total extrait (B) lors de la réduction d'oxydes de fer de synthèse par G. sulfurreducens [41]. ... Lire la suite

Fig. 3

Rate of Fe(III) reduction as a function of the estimated free energy of reaction during long-term G. sulfurreducens experiments (data from Roden [41]). Fe(III) reduction rates were computed from the nonlinear curve fits shown in Fig. 2. Symbols as in Fig. 1. The solid line shows the relationship between reaction rate and energetics predicted based on transition state theory [23], modified to account for the minimum free requirement for biological energy conservation, as described in Liu et al. [26]Masquer

Rate of Fe(III) reduction as a function of the estimated free energy of reaction during long-term G. sulfurreducens experiments (data from Roden [41]). Fe(III) reduction rates were computed from the nonlinear curve fits shown in Fig. 2. ... Lire la suite

Vitesses de réduction du FeIII en fonction de l'énergie libre estimée de la réaction lors d'expériences de longue durée utilisant G. sulfurreducens. Les vitesses de réduction du FeIII sont calculées aux dépens des courbes présentées sur la Fig. 2 et les symboles sont ceux de la Fig. 1. Le trait plein montre la relation entre vitesse de réduction et les données énergétiques prédites par la théorie de l'état de transition [23], modifiée pour tenir compte de l'exigence minimale en énergie nécessaire pour la conservation de l'énergie biologique [26]Masquer

Vitesses de réduction du FeIII en fonction de l'énergie libre estimée de la réaction lors d'expériences de longue durée utilisant G. sulfurreducens. Les vitesses de réduction du FeIII sont calculées aux dépens des courbes présentées sur la Fig. ... Lire la suite

Fig. 4

Correlation between oxide mineral surface area and the final concentration of total HCl-extractable Fe(II) (A) and surface-associated (‘sorbed’) Fe(II) (B) during long-term G. sulfurreducens experiments (data from Roden [41]). Symbols as in Fig. 1. Data for the HFO reduction system are omitted, since the mineral was transformed magnetite, which is resistant to further reduction for clearly defined thermodynamic reasons [14,20]. Lines show linear least-square regression fits of the data; data for lepidocrocite (filled diamonds) were omitted in regression in panel A. Masquer

Correlation between oxide mineral surface area and the final concentration of total HCl-extractable Fe(II) (A) and surface-associated (‘sorbed’) Fe(II) (B) during long-term G. sulfurreducens experiments (data from Roden [41]). Symbols as in Fig. 1. Data for the ... Lire la suite

Corrélation entre la surface spécifique des oxydes et la concentration finale en FeII extrait par HCl (A) ou la concentration en FeII adsorbé (B) lors d'expériences de longue durée utilisant G. sulfurreducens. Les symboles sont ceux de la Fig. 1. Les données relatives au système HFO sont omises, car ce minéral se transforme en magnétite, qui résiste à toute réduction ultérieure pour des raisons thermodynamiques bien établies [14,20]. Les traits pleins montrent les ajustements dérivant de régressions linéaires utilisant la méthode des moindres carrés. Les données relatives à la lépidocrocite (losange) ne sont pas utilisées pour tracer la droite de régression apparaissant sur la Fig. 4A. Masquer

Corrélation entre la surface spécifique des oxydes et la concentration finale en FeII extrait par HCl (A) ou la concentration en FeII adsorbé (B) lors d'expériences de longue durée utilisant G. sulfurreducens. Les symboles sont ceux de la Lire la suite

3.3 Role of amorphous Fe(III) oxide impurities?

It could be argued that the similar surface area-specific rates of reduction observed for the different crystalline Fe(III) oxide phases (Fig. 1A), as well as the correlation between oxide surface area and extent of reduction (Fig. 4), was due to the presence of easily reducible amorphous Fe(III) oxide impurities in the synthetic crystalline Fe(III) oxides, whose abundance could have scaled with oxide surface area. If this were the case, the arguments put forward here and in other recent papers [39,40] regarding surface area vs. thermodynamic control of crystalline Fe(III) oxide reduction would be invalid. Data on initial rates of ascorbate-catalyzed Fe(III) oxide reduction were used to evaluate this question.

Fig. 5 shows time course data for reductive dissolution of hematite, two goethite phases (‘Goethite 30C’ and ‘High Surface Area’ (HSA) goethite), and HFO in the presence of excess (10 mM) of ascorbic acid at pH 3. HFO was fully dissolved within 4 h, whereas much smaller amounts of the crystalline Fe(III) oxide phases were dissolved over a 26-h period. As a result of the much faster kinetics of HFO dissolution compared to the other oxides, it was possible to use the time course data to quantitatively estimate the amount of amorphous HFO impurities present in the crystalline solids. The time course data for the crystalline phases indicated a relatively rapid initial accumulation of Fe(II) during the first few hours of reaction, followed by constant rate of oxide dissolution between 4 and 26 h. This initial rapid Fe(II) production can be attributed to dissolution of HFO impurities. The overall accumulation of Fe(II) during the initial period thus represents a combination of crystalline oxide and HFO impurity dissolution. A simple mathematical model that simulated parallel dissolution of a mixture of crystalline oxide and HFO was developed to estimate the abundance of the HFO impurity. The rate of crystalline oxide dissolution (in % total Fe(III) per hr) was set equal to the linear rate observed between 4 and 26 h, as defined by the least-squares regression analyses shown in Fig. 5A–C:

d[Fe(III)crys]/dt=R(1)

Fig. 5

Reductive dissolution of Fisher hematite, goethite 30C, HSA goethite, and HFO in the presence of 10 mM ascorbic acid at pH 3. Total Fe(III) oxide concentrations were 6.4, 5.8, 5.7, and 1.1 mmol l−1 for the four oxide phases, respectively. Solid lines in panels AC show the results of linear least-square regression analyses. Solid line in panel D shows the result of nonlinear least-square regression fit of the data to an equation depicting the accumulation of end-product from a first-order reaction (Y(t)=Ymax[1exp(kt)], where Ymax is the maximum % dissolution, and k is a first-order rate constant). Dashed lines in panels AC show results of numerical simulations of the oxide dissolution data (see Section 3.3). Masquer

Reductive dissolution of Fisher hematite, goethite 30C, HSA goethite, and HFO in the presence of 10 mM ascorbic acid at pH 3. Total Fe(III) oxide concentrations were 6.4, 5.8, 5.7, and 1.1 mmol l−1 for the four oxide phases, respectively. Solid ... Lire la suite

Dissolution par réduction de l'hématite Fisher, de la goethite 30 °C, de la goethite HSA et du HFO en présence d'acide ascorbique 10 mM à pH 3. Les concentrations initiales en FeIII étaient de 6,4, 5,8, 5,7 et 1,1 mmol l−1 pour les différents oxydes. Les traits pleins dans les figures A à C correspondent aux résultats d'analyses de régression linéaire utilisant la méthode de moindres carrés. Le trait plein dans la figure D résulte de l'ajustement des données d'une régression non linéaire à une équation décrivant l'accumulation des produits de réaction selon une loi cinétique d'ordre l, c'est-à-dire : Y(t)=Ymax[1exp(kt)], où Ymax est le pourcentage maximal de dissolution et k la constante de vitesse. Les tirets des figures A à C correspondent aux résultats d'une simulation numérique des données relatives à la dissolution de ces oxydes. Masquer

Dissolution par réduction de l'hématite Fisher, de la goethite 30 °C, de la goethite HSA et du HFO en présence d'acide ascorbique 10 mM à pH 3. Les concentrations initiales en FeIII étaient de 6,4, 5,8, 5,7 et 1,1 mmol l−1 pour ... Lire la suite

The rate of HFO dissolution was modeled as a first-order reaction, using the rate constant (1.37 h−1) derived from the nonlinear least-square regression analysis shown in Fig. 5D:

d[HFO]/dt=k[HFO](2)

Eqs. (1) and (2) were integrated numerically using a standard Runge–Kutta algorithm [38], and total % Fe(III) dissolution was computed as the cumulative sum of crystalline oxide and HFO reduction. The initial fractional abundance of HFO was adjusted to achieve agreement between the observed and simulated % Fe(III) dissolution vs. time data. The results of the analysis are illustrated by the dashed lines in Fig. 5A–C, which reflect estimated HFO impurities of 0.04, 0.10, and 0.32% of the total Fe(III) content of hematite, ‘goethite 30C’, and ‘HSA goethite’, respectively.

The estimated relative abundance of HFO impurities in the crystalline Fe(III) oxides can be compared to the amount of Fe(III) oxide reduction that took place in the G. sulfurreducens reduction experiments in order to constrain the potential contribution of such impurities to the observed Fe(III) reduction activity. The percent of Fe(III) subject to enzymatic reduction ranged from 2.3 to 9.7% for the crystalline hematite and goethite phases; these values are 5- to 95-fold higher than the estimated abundance of HFO impurity in the respective oxide phases. These results verify that enzymatic reduction of crystalline Fe(III) oxide surfaces – rather than reduction of amorphous Fe(III) oxide impurities – was the dominant mode of Fe(II) production in the cultures. The conclusions reached above regarding thermodynamic vs. surface-bound Fe(II) control of long-term crystalline Fe(III) oxide reduction are therefore valid, and they suggest that thermodynamic calculations should be used with caution when interpreting controls on enzymatic Fe(III) oxide reduction in soils and sediments.

3.4 Reduction of natural Fe(III) oxide phases

Data from long-term experiments on bacterial and abiotic reduction of natural Fe(III) oxides (Fig. 6) were interpreted in relation to a standard a generalized rate law for mineral dissolution [22,36]:

Jt/m0=k(m/m0)γ(3)
where Jt is the rate of dissolution and/or reduction at time t,m0 is the initial mass of oxide, and m/m0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated significant changes in reactivity during long-term abiotic reductive dissolution (Fig. 6A), as indicated by γ values in excess of 1 for curve fits of the data to the generalized rate law [22,36]. Even larger changes in reactivity were estimated for the bacterial reduction experiments (Fig. 6B, solid symbols). However, when the analysis was restricted to the long-term ‘microbially reducible’ fraction of the Fe(III) oxide content of the natural solids (Fig. 6B, open symbols), the data could be well-approximated with γ values of ca. 1, i.e. by a first-order rate process.

Fig. 6

Kinetics of ascorbate (A) and bacterial (B) reduction of natural Fe(III) oxide-bearing materials. Data are reproduced with permission from Fig. 2 in Roden [42]. Squares, diamonds, and triangles represent the HC, CP, and Oyster materials, respectively. Open symbols in panel B refer to reduction of the ‘microbially available’ fraction of the oxide pool. The terms m0 and mt refer to the mass (concentration) of Fe(III) oxide present at the start of the experiment and at time t, respectively. Solid lines show nonlinear regression fits of the data to the integrated form of the generalized mineral dissolution rate law (Eq. (3) in text). γ values refer to the results of the nonlinear curve fits. Masquer

Kinetics of ascorbate (A) and bacterial (B) reduction of natural Fe(III) oxide-bearing materials. Data are reproduced with permission from Fig. 2 in Roden [42]. Squares, diamonds, and triangles represent the HC, CP, and Oyster materials, respectively. Open symbols in ... Lire la suite

Cinétique de la réduction d'oxydes de fer naturels par l'ascorbate (A) et des bactéries (B). Les données proviennent de Roden [42]. Les carrés, les losanges et les triangles sont relatifs aux résultats obtenus avec les matériaux dénommés HC, CP et Oyster. Dans la Fig. 6B, les symboles ouverts font référence à la réduction de la fraction d'oxyde définie comme « microbiologiquement disponible». Les termes m0 et mt sont les masses (concentrations) des oxydes de fer présents en début de l'expérience et au temps t, respectivement. Les traits pleins montrent les ajustements de régressions non linéaires à la forme intégrée d'une loi générale de la cinétique de dissolution (Éq. (3) dans le texte). Les valeurs de γ sont issues de ces ajustements. Masquer

Cinétique de la réduction d'oxydes de fer naturels par l'ascorbate (A) et des bactéries (B). Les données proviennent de Roden [42]. Les carrés, les losanges et les triangles sont relatifs aux résultats obtenus avec les matériaux dénommés HC, CP ... Lire la suite

Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction [42]. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of natural crystalline Fe(III) oxide reduction. This assertion is fully supported by the results of the synthetic Fe(III) oxide reduction experiments (Figs. 3 and 4).

3.5 General conceptual model and rate law for microbial Fe(III) oxide reduction

The experimental findings summarized here point to a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution in that oxide surface area, rather than crystal structure and thermodynamic stability, exerts primary control on both the initial rate and the long-term extent of reduction. Numerical simulations of surface area-controlled biotic vs. abiotic Fe(III) oxide reduction indicate that this conceptual model can account for the pseudo-first-order kinetics of reduction of the operationally defined ‘microbially reducible’ fraction of the sediment Fe(III) oxide pool [42]. The explicit surface area control of the initial rate and extent of oxide reduction leads to a general rate law for oxide reduction as a function of electron acceptor and FeRB abundance that differs from those for reduction of chelated Fe(III) and other soluble metal species. As illustrated for synthetic goethite in Fig. 7, initial rates of Fe(III) oxide reduction are a linear function of oxide loading up to relatively high (200 mmol l−1) bulk Fe(III) concentrations, a hyperbolic (Monod-style) function of total FeRB cell density, and a linear function of attached FeRB cell density. The latter relationships are analogous to the well-recognized dependence of abiotic reductive dissolution rate on total and surface-associated ligand concentration [16]. These relationships between oxide reduction rate and oxide/FeRB cell abundance are the opposite of those for reduction of soluble metals, as illustrated for Fe(III)-citrate in Fig. 8: rates of soluble metal reduction are a hyperbolic function of electron acceptor concentration, and a linear function of FeRB cell abundance. Similar patterns hold for reduction of other soluble metals such as U(VI), Co(III), Cr(VI), and Tc(VI) [25,27,43,45,53]. Table 2 provides a summary of rate laws that are appropriate for use in modeling solid-phase and dissolved Fe(III) (and other oxidized metals) reduction.

Fig. 7

Kinetics of synthetic goethite reduction by S. putrefaciens and G. sulfurreducens as a function of oxide loading (A) and FeRB cell density (B). The concentration of cells in the experiments shown in panel A was ca. 108 cells ml−1. The concentration of surface sites used to normalize cell density in panel B was calculated based on oxide mass loading (10 mmol l−1; 89 g l−1), the measured mineral surface area (ca. 55 m2 g−1), and an assumed standard mineral surface site density of 3.84×10−6molsitesm−2 recommended by Davis and Kent [7]. Inset in panel B shows relationship between Fe(III) reduction rate and attached FeRB cell density in the G. sulfurreducens experiment; the abundance of attached cells was determined by direct cell counting as described in Caccavo et al. [4]. Solid lines in panels A and B show results of linear and non-linear least-square regression fits, respectively. The non-linear regression fit in panel B is defined by the following equation (see Table 2): Vmaxsurf[FeRB]ssn/(KFeRB+[FeRB]ssn); best-fit values for Vmaxsurf and KFeRB are 1.3 mmol mmol sites−1 d−1 and 1.1×1012cellsmmolsites−1, respectively. Masquer

Kinetics of synthetic goethite reduction by S. putrefaciens and G. sulfurreducens as a function of oxide loading (A) and FeRB cell density (B). The concentration of cells in the experiments shown in panel A was ca. 108 cells ml−1. ... Lire la suite

Cinétique de la réduction d'une gœthite par S. putrefaciens et G. sulfurreducens. Les pointillés de la Fig. 7B montrent la densité maximale (normalisée par rapport aux nombres de sites superficiels) de cellules de bactéries ferriréductrices (FeRB) présentes dans les expériences utilisant les différentes charges en oxydes mentionnées sur la Fig. 7A. La concentration en sites superficiels a été calculée en prenant en compte la charge en oxyde (10 mmol l−1), la surface spécifique du minéral (environ 55 m2 g−1) et une densité de sites superficiels de 3,84×10−6molsitesm−2 [7]. Dans la Fig. 7B, le graphique inséré montre la relation entre la vitesse de réduction du FeIII et la densité de cellules attachées lors d'une expérience utilisant G. sulfurreducens ; l'abondance de cellules attachées a été mesurée par comptage, comme décrit dans Caccavo et al. [4]. Les traits pleins sur les deux figures montrent les résultats d'ajustement par des régressions linéaire et non linéaire. Sur la Fig. 7B, l'ajustement est décrit par l'équation suivante (Tableau 2) : Vmaxsurf[FeRB]ssn/(KFeRB+[FeRB]ssn). Les meilleurs ajustements pour Vmaxsurf et KFeRB correspondent aux valeurs suivantes : 1,3 mmol mmol sites−1 j−1 pour Vmax et 1,1×1012cellulesmmolsites−1 pour KFeRBMasquer

Cinétique de la réduction d'une gœthite par S. putrefaciens et G. sulfurreducens. Les pointillés de la Fig. 7B montrent la densité maximale (normalisée par rapport aux nombres de sites superficiels) de cellules de bactéries ferriréductrices (FeRB) présentes ... Lire la suite

Fig. 8

Kinetics of Fe(III)-citrate reduction by G. sulfurreducens. Solid lines in panels A and B show results of linear and non-linear least-square regression fits, respectively. The slope of the line in panel A corresponds to the parameter αFeRB in Table 2; best fit value=5.9×10−11mmolcell−1d−1. The non-linear regression fit in panel B is defined by the following equation (see Table 2): Vmax[Fe(III)aq]/(KFe(III)+[Fe(III)aq]); best-fit values for Vmax and KFe(III) are 8.1 mmol l−1 d−1 and 0.25 mmol l−1, respectively. Masquer

Kinetics of Fe(III)-citrate reduction by G. sulfurreducens. Solid lines in panels A and B show results of linear and non-linear least-square regression fits, respectively. The slope of the line in panel A corresponds to the parameter Lire la suite

Cinétique de la réduction du citrate ferrique par G. sulfurreducens. Les traits pleins montrent les résultats d'ajustements utilisant, soit une régression linéaire (B), soit une régression non linéaire (A). La pente de la droite de la Fig. 8B correspond au paramètre αFeRB du Tableau 2 et le meilleur ajustement est obtenu avec la valeur 5,9×10−11mmolcellule−1j−1. La courbe calculée de la Fig. 8A est décrite par l'équation suivante (Tableau 2) : Vmax[Fe(III)aq]/(KFe(III)+[Fe(III)aq]). Pour le meilleur ajustement, Vmax=8,1mmoll−1j−1 et KFe(III)=0,25mmoll−1Masquer

Cinétique de la réduction du citrate ferrique par G. sulfurreducens. Les traits pleins montrent les résultats d'ajustements utilisant, soit une régression linéaire (B), soit une régression non linéaire (A). La pente de la droite de la Fig. 8B ... Lire la suite

Table 2

General rate laws for microbial reduction of solid-phase and aqueous Fe(III)

Lois cinétiques générales de la réduction microbienne de Fe(III) solide et du Fe(II) en solution

Solid phase
RFe(III)=[Fe(III)fss]Vmaxsurf[FeRB]ssnKFeRB+[FeRB]ssn
where:
RFe(III) = bulk volumetric rate of Fe(III) oxide reduction (e.g., mmol l−1 d−1);
[Fe(III)fss] = bulk volumetric abundance of ‘free’ (i.e. microbially reducible) Fe(III) oxide surface sites (e.g., mmol sites l−1);
Vsurfmax = maximum FeRB cell density-dependent reduction rate constant (e.g., mmol (mmol sites)−1 d−1) (see Fig. 7B);
[FeRB]ssn = surface site-normalized FeRB cell density (e.g., cells (mmol free surface sites)−1) (see Fig. 7B);
KFeRB = half-saturation constant for relationship between FeRB cell density and oxide reduction rate constant (e.g., cells/mmol free surface sites) (see Fig. 7B);
Aqueous phase
RFe(III)=Vmax[Fe(III)aq]KFe(III)+[Fe(III)]aq
where:
RFe(III) = bulk volumetric rate of Fe(III) oxide reduction (e.g., mmol l−1 d−1);
Vmax=αFeRB [FeRB]bulk (see Fig. 8A);
[FeRB]bulk = bulk FeRB cell density (e.g., cells l−1);
αFeRB = proportionality constant for relationship between bulk FeRB cell density and soluble Fe(III) reduction rate (e.g., mmol cell−1 d−1) (see Fig. 8B);
[Fe(III)aq] = concentration of aqueous Fe(III) (e.g., mmol l−1).
KFe(III) = Half-saturation constant for relationship between Fe(III)aq concentration and reduction rate (e.g., mmol/l) (see Fig. 8A).

3.6 Implications for natural soils and sediments

Virtually all experimental work to date on bacterial synthetic Fe(III)-oxide reduction indicates that oxide mineral heterogeneity in natural soils and sediments is likely to affect initial rates of bacterial reduction (e.g., during the early stages of anaerobic metabolism following the onset of anoxic conditions) mainly via an influence on reactive surface site density. Although variations in oxide thermodynamic properties may alter rates of enzymatic reduction to some extent (as illustrated by the studies of lepidocrocite vs. goethite reduction), this is likely to represent a secondary effect in relation to the primary controlling influence of oxide surface area. Hence, the surface area of different oxides phases present in a soil or sediment will exert primary control on initial rates of enzymatic reduction.

During the later stages of bacterial Fe(III) oxide reduction in permanently reduced sediments, accumulation of aqueous and surface-bound Fe(II) is expected to exert a dominant control on apparent Fe(III) oxide reactivity toward enzymatic reduction, particularly in situations where removal of Fe(II) end-products is slow compared to the kinetics of reduction [46]. This conceptual model is consistent with a recent analysis of the kinetics of hematite reduction by S. putrefaciens strain CN32 [2,48], which showed that initial rates of reduction were under kinetic control (presumably limited by the rate of electron transfer from FeRB cells to the oxide), whereas the long-term extent of reduction was limited by mass transfer of Fe(II) away from oxide/FeRB surfaces. As discussed above (see Fig. 4), there is a general relationship between oxide surface area and long-term extent of oxide reduction in closed reaction systems, which results from the function of oxide surfaces as a repository for sorbed and/or surface-precipitated biogenic Fe(II). Although the existence of this relationship implies a connection between extent of bacterial reduction and oxide thermodynamic properties, evidence suggests that this connection is not directly related to thermodynamic properties such as Eh0 or ΔGf, but rather results mainly from the correlation between these properties and oxide surface area.

An important implication of the above findings is that inferences regarding the ability of bacterial Fe(III) oxide reduction to compete with other terminal electron accepting processes (TEAPs) in soils and sediments should be based on estimates of bulk reactive (i.e. microbially accessible) surface site density – rather than the thermodynamic properties of the oxide(s) identified as the dominant phase(s) in a particular soil or sediment. This line of reasoning leads to the provisional conclusion that recent thermodynamic explanations for the coexistence of bacterial Fe(III) oxide reduction and other TEAPs (e.g., sulfate reduction and methanogenesis) in sediments and subsurface environments [17,18,37] have produced reasonable results for mechanistically incorrect reasons. The ability of thermodynamic considerations to explain the coexistence of bacterial Fe(III) oxide reduction and other TEAPs in sediments is likely the fortuitous result of the correlation between oxide thermodynamic properties and surface properties, which, based on current experimental information, actually control the initial reduction rate and long-term availability of Fe(III) oxides as competing electron acceptors for anaerobic respiration. Experiments with a mixed culture of wetland sediment bacteria and a range of synthetic Fe(III) oxides indicate that Fe(III)-reducing bacteria can outcompete methanogens for acetate with equal effectiveness when the different oxides are present at comparable surface area loadings – despite major differences in computed ΔG values for acetate oxidation coupled to Fe(III) oxide reduction [39]. These results emphasize the need for more accurate and robust wet-chemical (e.g., Hacherl et al. [15]) and/or spectroscopic techniques for assessing the surface properties (e.g., specific surface area and reactive site density) of natural Fe(III) oxide assemblages, including ones in which the presence of sorbed or surface precipitated Fe(II) limits the potential for enzymatic electron transfer and thereby controls apparent oxide reactivity toward microbial reduction.

Acknowledgements

This research was supported by grants DE-FG07-ER6321 and DE-FG02-01ER63182 from the US Department of Energy (DOE) Environmental Management Science and Natural and Accelerate Bioremediation Programs, respectively.


Bibliographie

[1] P.L. Brezonik Chemical Kinetics and Process Dynamics in Aquatic Systems, Lewis Publishers, Ann Arbor, 1994

[2] W.D. Burgos; R.A. Royer; Y. Fang; G.T. Yeh; A.S. Fisher; B.H. Jeon; B.A. Dempsey Theoretical and experimental considerations related to reaction-based modeling: a case study using iron(III) oxide bioreduction, Geomicrobiol. J., Volume 19 (2002), pp. 253-292

[3] F. Caccavo; D.J. Lonergan; D.R. Lovley; M. Davis; J.F. Stolz; M.J. McInerney Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism, Appl. Environ. Microbiol., Volume 60 (1994), pp. 3752-3759

[4] F. Caccavo; P.C. Schamberger; K. Keiding; P.H. Nielsen Role of hydrophobicity in adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga to amorphous Fe(III) oxide, Appl. Environ. Microbiol., Volume 63 (1997), pp. 3837-3843

[5] W.M. Clark Oxidation–Reduction Potentials of Organic Systems, The Williams and Wilkins Company, Baltimore, MD, USA, 1960

[6] R.M. Cornell; U. Schwertmann The Iron Oxides, VCH Verlagsgesellschaft mbH/VCH Publishers, Inc., Weinheim/New York, 1996

[7] J.A. Davis; D.B. Kent Surface complexation modeling in aqueous geochemistry (M.F. Hochella; A.F. White, eds.), Mineral–Water Interface Geochemistry, Mineralogical Society of America, Washington, DC, 1990, pp. 177-260

[8] J.A. Davis; S.B. Yabusaki; C.I. Steefel; J.M. Zachara; G.P. Curtis; G.D. Redden; L.J. Criscenti; B.D. Honeyman Assessing conceptual models for subsurface reactive transport of inorganic contaminants, EOS Trans., AGU, Volume 85 (2004), pp. 449-455

[9] W. Davison Iron and manganese in lakes, Earth Sci. Rev., Volume 34 (1993), pp. 119-163

[10] T.J. DiChristina; C.M. Moore; C.A. Haller Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type-II protein secretion gene, J. Bacteriol., Volume 184 (2002), pp. 142-151

[11] D.A. Dzombak; F.M.M. Morel Surface Complexation Modeling: Hydrous Ferric Oxide, John Wiley & Sons, New York, 1990

[12] S.J. Field; P.S. Dobbin; M.R. Cheesman; N.J. Watmough; A.J. Thomson; D.J. Richardson Purification and magneto-optical spectroscopic characterization of cytoplasmic membrane and outer membrane multiheme c-type cytochromes from Shewanella frigidimarina NCIMB400, J. Biol. Chem., Volume 275 (2000), pp. 8515-8522

[13] W.R. Fischer Microbiological reactions of iron in soils (J.W. Stucki; B.A. Goodman; U. Schwertmann, eds.), Iron in Soils and Clay Minerals, D. Reidel Publ. Co., Dordrecht, The Netherlands, 1988, pp. 715-748

[14] J.K. Fredrickson; J.M. Zachara; D.W. Kennedy; H. Dong; T.C. Onstott; N.W. Hinman; S. Li Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium, Geochim. Cosmochim. Acta, Volume 62 (1998), pp. 3239-3257

[15] E.L. Hacherl; D.S. Kosson; L.Y. Young; R.W. Cowan Measurement of iron(III) bioavailability in pure iron oxide minerals and soils using anthraquinone-2,6-disulfonate oxidation, Environ. Sci. Technol., Volume 35 (2001), pp. 4886-4893

[16] J.G. Hering; W. Stumm Oxidative and reductive dissolution of minerals (M.F. Hochella; A.F. White, eds.), Mineral–Water Interface Geochemistry, vol. 23, Mineralogical Society of America, Washington, DC, 1990, pp. 427-464

[17] R. Jakobsen; H.J. Albrechtsen; M. Rasmussen; H. Bay; P. Bjerg; T.H. Christensen H2 concentrations in a landfill leachate plume (Grindsted, Denmark): in situ energetics of terminal electron acceptor processes, Environ. Sci. Technol., Volume 32 (1998), pp. 2142-2148

[18] R. Jakobsen; D. Postma Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark, Geochim. Cosmochim. Acta, Volume 63 (1999), pp. 137-151

[19] B.H. Jeon; S.D. Kelly; K.M. Kemner; M.O. Barnett; W.D. Burgos; B.A. Dempsey; E.E. Roden Microbial reduction of U(VI) at the solid–water interface, Environ. Sci. Technol., Volume 38 (2004), pp. 5649-5655

[20] J.E. Kostka; K.H. Nealson Dissolution and reduction of magnetite by bacteria, Environ. Sci. Technol., Volume 29 (1995), pp. 2535-2540

[21] S.M. Kraemer; J.G. Hering Influence of solution saturation state on the kinetics of ligand-controlled dissolution of oxide phases, Geochim. Coschim. Acta, Volume 61 (1997), pp. 2855-2866

[22] O. Larsen; D. Postma Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite, Geochim. Cosmochim. Acta, Volume 65 (2001), pp. 1367-1379

[23] A.C. Lasaga Kinetic Theory in the Earth Sciences, Princeton University Press, Princeton, NJ, 1998

[24] C. Leang; M.V. Coppi; D.R. Lovley OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens, J. Bacteriol., Volume 185 (2003), pp. 2096-2103

[25] C. Liu; Y.A. Gorby; J.M. Zachara; J.K. Fredrickson; C.F. Brown Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), Tc(VII) in cultures of dissimilatory metal reducing bacteria, Biotechnol. Bioengin., Volume 80 (2002), pp. 637-649

[26] C. Liu; S. Kota; J.M. Zachara; J.K. Fredrickson; C. Brinkman Kinetic analysis of the bacterial reduction of goethite, Environ. Sci. Technol., Volume 35 (2001), pp. 2482-2490

[27] C. Liu; J.M. Zachara; Y.A. Gorby; J.E. Szecsody; C.F. Brown Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32, Environ. Sci. Technol., Volume 35 (2001), pp. 1385-1393

[28] S.K. Lower; M.F. Hochella; T.J. Beveridge Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH, Science, Volume 292 (2001), pp. 1360-1363

[29] T.S. Magnuson; N. Isoyama; A.L. Hodges-Myerson; G. Davidson; M.J. Maroney; G.G. Geesey; D.R. Lovley Isolation, characterization, and gene sequence analysis of a membrane-associated 89 kDa Fe(III)-reducing cytochrome c from Geobacter sulfurreducens, Biochem. J., Volume 359 (2001), pp. 147-152

[30] T.S. Magnuson; A.L. Hodges-Myerson; D.R. Lovley Characterization of a membrane-bound NADH-dependent Fe3+ reductase from the dissimilatory Fe3+-reducing bacterium Geobacter sulfurreducens, FEMS Microbiol. Lett., Volume 185 (2000), pp. 205-211

[31] B.A. Methe Genome of Geobacter sulfurreducens: metal reduction in subsurface environments, Science, Volume 302 (2003), pp. 1967-1969

[32] C. Myers; J. Myers Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDA c-type cytochrome, Biochim. Biophys. Acta, Volume 1326 (1997), pp. 307-318

[33] C.R. Myers; J.M. Myers Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumerate, and nitrate by Shewanella putrefaciens MR-1, J. Bacteriol., Volume 179 (1997), pp. 1143-1152

[34] J. Myers; C. Myers Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens, Biochim. Biophys. Acta, Volume 1373 (1998), pp. 237-257

[35] J.M. Myers; C.R. Myers Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide, Appl. Environ. Microbiol., Volume 67 (2001), pp. 260-269

[36] D. Postma The reactivity of iron oxides in sediments: a kinetic approach, Geochim. Cosmochim. Acta, Volume 57 (1993), pp. 5027-5034

[37] D. Postma; R. Jakobsen Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface, Geochim. Cosmochim. Acta, Volume 60 (1996), pp. 3169-3175

[38] W.H. Press; S.A. Teukolsky; W.T. Vetterling; B.P. Flannery, Numerical Recipes in FORTRAN, vol. 1, Cambridge University Press, Port Chester, NY, 1992

[39] E.E. Roden Diversion of electron flow from methanogenesis to crystalline Fe(III) oxide reduction in acetate-limited cultures of wetland sediment microorganisms, Appl. Environ. Microbiol., Volume 69 (2003), pp. 5702-5706

[40] E.E. Roden Fe(III) oxide reactivity toward biological versus chemical reduction, Environ. Sci. Technol., Volume 37 (2003), pp. 1319-1324

[41] E.E. Roden Thermodynamic versus surface area control of microbial Fe(III) oxide reduction kinetics, EOS Trans. AGU (Fall Meet Suppl.), Volume 84 (2003) no. 46 (Abstract B42C-01)

[42] E.E. Roden Analysis of long-term bacterial versus chemical Fe(III) oxide reduction kinetics, Geochim. Cosmochim. Acta, Volume 68 (2004), pp. 3205-3216

[43] E.E. Roden, Unpublished data, 2005

[44] E.E. Roden; Y.A. Gorby Introduction to special issue on microbial Fe(III) oxide reduction, Geomicrobiol. J., Volume 19 (2002), pp. 139-140

[45] E.E. Roden; T.D. Scheibe Conceptual and numerical model of uranium(VI) reductive immobilization in fractured subsurface sediments, Chemosphere, Volume 59 (2005), pp. 617-628

[46] E.E. Roden; M.M. Urrutia Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxides, Environ. Sci. Technol., Volume 33 (1999), pp. 1847-1853

[47] E.E. Roden; M.M. Urrutia Influence of biogenic Fe(II) on bacterial reduction of crystalline Fe(III) oxides, Geomicrobiol. J., Volume 19 (2002), pp. 209-251

[48] R.A. Royer; W.D. Burgos; A.S. Fisher; R.F. Unz; B.A. Dempsey Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation, Environ. Sci. Technol., Volume 36 (2002), pp. 1939-1946

[49] B. Schink Energetics of syntrophic cooperation in methanogenic degradation, Microbiol. Mol. Biol. Rev., Volume 61 (1997), pp. 262-280

[50] U. Schwertmann; R.M. Cornell Iron Oxides in the Laboratory, VCH Verlagsgesellschaft mbH/VCH Publishers, Inc., Weinheim/New York, 1991

[51] W. Stumm Chemistry of the Solid–Water Interface, John Wiley & Sons, New York, 1992

[52] W. Stumm; J.J. Morgan Aquatic Chemistry, John Wiley & Sons, Inc., New York, 1996

[53] M.J. Truex; B.M. Peyton; N.B. Valentine; Y.A. Gorby Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions, Biotechnol. Bioengin., Volume 55 (1997), pp. 490-496

[54] J.M. Zachara; C.C. Ainsworth; C.E. Cowan; C.T. Resch Adsorption of chromate by subsurface soil horizons, Soil Sci. Soc. Am. J., Volume 53 (1989), pp. 418-428

[55] J.M. Zachara; S.C. Smith; L.S. Kuzel Adsorption and dissociation of Co–EDTA complexes in Fe oxide containing subsurface soils, Geochim. Cosmochim. Acta, Volume 59 (1995), pp. 4825-4844


Cité par

  • Babar Ali Shah Status of Groundwater Arsenic Contamination in the States of North East India: A Review, Ground Water Contamination in India (2024), p. 25 | DOI:10.1007/978-3-031-49092-7_3
  • Xin Li; Aiyu Niu; Shanshan Yang; Fei Liu The reduction of nitrobenzene by Fe(II)-goethite-hematite heterogeneous systems: Insight from thermodynamic parameters of reduction potential, Journal of Environmental Management, Volume 370 (2024), p. 122404 | DOI:10.1016/j.jenvman.2024.122404
  • Edward J. O’Loughlin Microbial Reduction of Geogenic and Synthetic Goethite and Hematite, Minerals, Volume 14 (2024) no. 11, p. 1086 | DOI:10.3390/min14111086
  • Qusheng Jin Building microbial kinetic models for environmental application: A theoretical perspective, Applied Geochemistry, Volume 158 (2023), p. 105782 | DOI:10.1016/j.apgeochem.2023.105782
  • Imane Slimani; Xia Zhu-Barker; Patricia Lazicki; William Horwath Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?, Biogeosciences, Volume 20 (2023) no. 18, p. 3873 | DOI:10.5194/bg-20-3873-2023
  • Christopher P. West; Ana C. Morales; Jackson Ryan; Maria V. Misovich; Anusha P. S. Hettiyadura; Felipe Rivera-Adorno; Jay M. Tomlin; Andrew Darmody; Brittany N. Linn; Peng Lin; Alexander Laskin Molecular investigation of the multi-phase photochemistry of Fe(iii)–citrate in aqueous solution, Environmental Science: Processes Impacts, Volume 25 (2023) no. 2, p. 190 | DOI:10.1039/d1em00503k
  • Ying Liu; Qian Zhao; Chengmei Liao; Lili Tian; Xuejun Yan; Nan Li; Xin Wang Anaerobic bioreduction of elemental sulfur improves bioavailability of Fe (III) oxides for bioremediation, Science of The Total Environment, Volume 858 (2023), p. 159794 | DOI:10.1016/j.scitotenv.2022.159794
  • Yidan Zhang; Edward J. O'Loughlin; Su-Young Park; Man Jae Kwon Effects of Fe(III) (hydr)oxide mineralogy on the development of microbial communities originating from soil, surface water, groundwater, and aerosols, Science of The Total Environment, Volume 905 (2023), p. 166993 | DOI:10.1016/j.scitotenv.2023.166993
  • Eva Pakostova; David M. Hilger; David W. Blowes; Carol J. Ptacek Microbial processes with the potential to mobilize As from a circumneutral-pH mixture of flotation and roaster tailings, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-50435-3
  • Diego Barcellos; Hermano M. Queiroz; Amanda D. Ferreira; Angelo F. Bernardino; Gabriel Nuto Nóbrega; Xosé L. Otero; Tiago O. Ferreira Short-term Fe reduction and metal dynamics in estuarine soils impacted by Fe-rich mine tailings, Applied Geochemistry, Volume 136 (2022), p. 105134 | DOI:10.1016/j.apgeochem.2021.105134
  • Chuanqiao Zhou; Yu Peng; Li Chen; Miaotong Yu; Muchun Zhou; Runze Xu; Lanqing Zhang; Siyuan Zhang; Xiaoguang Xu; Limin Zhang; Guoxiang Wang Rapidly increasing sulfate concentration: a hidden promoter of eutrophication in shallow lakes, Biogeosciences, Volume 19 (2022) no. 17, p. 4351 | DOI:10.5194/bg-19-4351-2022
  • Xiaolin Zhang; Ruixiang Li; Jinning Wang; Chengmei Liao; Lean Zhou; Jingkun An; Tian Li; Xin Wang; Qixing Zhou Construction of conductive network using magnetite to enhance microflora interaction and petroleum hydrocarbons removal in plant-rhizosphere microbial electrochemical system, Chemical Engineering Journal, Volume 433 (2022), p. 133600 | DOI:10.1016/j.cej.2021.133600
  • Manshu Gao; Yue Su; Jiabao Gao; Xinwei Zhong; Hao Li; Haoji Wang; Changwei Lü; Jiang He Arsenic speciation transformation in soils with high geological background: New insights from the governing role of Fe, Chemosphere, Volume 302 (2022), p. 134860 | DOI:10.1016/j.chemosphere.2022.134860
  • Tristan Babey; Kristin Boye; Bradley Tolar; Maya Engel; Vincent Noël; Zach Perzan; Naresh Kumar; Christopher A. Francis; John R. Bargar; Kate Maher Simulation of anoxic lenses as exporters of reactivity in alluvial aquifer sediments, Geochimica et Cosmochimica Acta, Volume 334 (2022), p. 119 | DOI:10.1016/j.gca.2022.07.018
  • Mingzhao Zou; Yichao Wu; Marc Redmile-Gordon; Dengjun Wang; Jun Liu; Qiaoyun Huang; Peng Cai Influence of surface coatings on the adhesion of Shewanella oneidensis MR-1 to hematite, Journal of Colloid and Interface Science, Volume 608 (2022), p. 2955 | DOI:10.1016/j.jcis.2021.11.020
  • Miao Zhao; Shenghui Zhang The influence of shellfish farming on sedimentary organic carbon mineralization: A case study in a coastal scallop farming area of Yantai, China, Marine Pollution Bulletin, Volume 182 (2022), p. 113941 | DOI:10.1016/j.marpolbul.2022.113941
  • Gongde Chen; Aaron Thompson; Christopher A. Gorski Disentangling the size-dependent redox reactivity of iron oxides using thermodynamic relationships, Proceedings of the National Academy of Sciences, Volume 119 (2022) no. 40 | DOI:10.1073/pnas.2204673119
  • Chuanqiao Zhou; Li Chen; Yu Peng; Miaotong Yu; Siyuan Zhang; Runze Xu; Lanqing Zhang; Xiaoguang Xu; Limin Zhang; Guoxiang Wang Rapidly Increasing Sulfate Concentration: A Hidden Promoter of Eutrophication  In Shallow Lakes, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4016138
  • Wei Xiu; Wenjie Yuan; David A. Polya; Huaming Guo; Jonathan R. Lloyd A critical review of abiotic and microbially-mediated chemical reduction rates of Fe(III) (oxyhydr)oxides using a reactivity model, Applied Geochemistry, Volume 126 (2021), p. 104895 | DOI:10.1016/j.apgeochem.2021.104895
  • Jianzhi Huang; Adele Jones; T. David Waite; Yiling Chen; Xiaopeng Huang; Kevin M. Rosso; Andreas Kappler; Muammar Mansor; Paul G. Tratnyek; Huichun Zhang Fe(II) Redox Chemistry in the Environment, Chemical Reviews, Volume 121 (2021) no. 13, p. 8161 | DOI:10.1021/acs.chemrev.0c01286
  • Kayla A. Calapa; Melissa K. Mulford; Tyler D. Rieman; John M. Senko; Augusto S. Auler; Ceth W. Parker; Hazel A. Barton Hydrologic Alteration and Enhanced Microbial Reductive Dissolution of Fe(III) (hydr)oxides Under Flow Conditions in Fe(III)-Rich Rocks: Contribution to Cave-Forming Processes, Frontiers in Microbiology, Volume 12 (2021) | DOI:10.3389/fmicb.2021.696534
  • Janet M. Paper; Theodore M. Flynn; Maxim I. Boyanov; Kenneth M. Kemner; Ben R. Haller; Kathleen Crank; AnneMarie Lower; Qusheng Jin; Matthew F. Kirk Influences of pH and substrate supply on the ratio of iron to sulfate reduction, Geobiology, Volume 19 (2021) no. 4, p. 405 | DOI:10.1111/gbi.12444
  • Sudeera Wickramarathna; Rohana Chandrajith; Atula Senaratne; Varun Paul; Padmanava Dash; Saumya Wickramasinghe; Patrick J. Biggs Bacterial influence on the formation of hematite: implications for Martian dormant life, International Journal of Astrobiology, Volume 20 (2021) no. 4, p. 270 | DOI:10.1017/s1473550421000124
  • Edward J. O’Loughlin; Maxim I. Boyanov; Christopher A. Gorski; Michelle M. Scherer; Kenneth M. Kemner Effects of Fe(III) Oxide Mineralogy and Phosphate on Fe(II) Secondary Mineral Formation during Microbial Iron Reduction, Minerals, Volume 11 (2021) no. 2, p. 149 | DOI:10.3390/min11020149
  • Na Zhang; Man Tong; Songhu Yuan Redox transformation of structural iron in nontronite induced by quinones under anoxic conditions, Science of The Total Environment, Volume 801 (2021), p. 149637 | DOI:10.1016/j.scitotenv.2021.149637
  • Ruixia Han; Jitao Lv; Suhuan Zhang; Shuzhen Zhang Hematite facet-mediated microbial dissimilatory iron reduction and production of reactive oxygen species during aerobic oxidation, Water Research, Volume 195 (2021), p. 116988 | DOI:10.1016/j.watres.2021.116988
  • Ruixia Han; Jitao Lv; Zaoquan Huang; Suhuan Zhang; Shuzhen Zhang Pathway for the Production of Hydroxyl Radicals during the Microbially Mediated Redox Transformation of Iron (Oxyhydr)oxides, Environmental Science Technology, Volume 54 (2020) no. 2, p. 902 | DOI:10.1021/acs.est.9b06220
  • Chris M. D. Kocur; Dimin Fan; Paul G. Tratnyek; Richard L. Johnson Predicting Abiotic Reduction Rates Using Cryogenically Collected Soil Cores and Mediated Reduction Potential Measurements, Environmental Science Technology Letters, Volume 7 (2020) no. 1, p. 20 | DOI:10.1021/acs.estlett.9b00665
  • Soureyatou Hamidou; Rino Dubé; Paul Lessard; Gerardo Buelna; Caetano C. Dorea; Yann LeBihan Passive phosphorus capture in biofiltration context: nitrate impact on the performance, Environmental Technology, Volume 41 (2020) no. 28, p. 3682 | DOI:10.1080/09593330.2019.1618921
  • Fengfeng Zhang; Fabienne Battaglia-Brunet; Jennifer Hellal; Catherine Joulian; Pascale Gautret; Mikael Motelica-Heino Impact of Fe(III) (Oxyhydr)oxides Mineralogy on Iron Solubilization and Associated Microbial Communities, Frontiers in Microbiology, Volume 11 (2020) | DOI:10.3389/fmicb.2020.571244
  • Katja Laufer; Alexander B. Michaud; Hans Røy; Bo B. Jørgensen Reactivity of Iron Minerals in the Seabed Toward Microbial Reduction – A Comparison of Different Extraction Techniques, Geomicrobiology Journal, Volume 37 (2020) no. 2, p. 170 | DOI:10.1080/01490451.2019.1679291
  • Clark Johnson; Brian Beard; Stefan Weyer Fe Isotope Fractionation Factors, Iron Geochemistry: An Isotopic Perspective (2020), p. 39 | DOI:10.1007/978-3-030-33828-2_3
  • Soma Ghosh; Pinaki Sar Microcosm based analysis of arsenic release potential of Bacillus sp. strain IIIJ3-1 under varying redox conditions, World Journal of Microbiology and Biotechnology, Volume 36 (2020) no. 6 | DOI:10.1007/s11274-020-02860-z
  • Luiza Notini; Drew E. Latta; Anke Neumann; Carolyn I. Pearce; Michel Sassi; Alpha T. N’Diaye; Kevin M. Rosso; Michelle M. Scherer A Closer Look at Fe(II) Passivation of Goethite, ACS Earth and Space Chemistry, Volume 3 (2019) no. 12, p. 2717 | DOI:10.1021/acsearthspacechem.9b00224
  • Svend H. C. Weihe; Marco Mangayayam; Karina K. Sand; Dominique J. Tobler Hematite Crystallization in the Presence of Organic Matter: Impact on Crystal Properties and Bacterial Dissolution, ACS Earth and Space Chemistry, Volume 3 (2019) no. 4, p. 510 | DOI:10.1021/acsearthspacechem.8b00166
  • Hanni Vigderovich; Lewen Liang; Barak Herut; Fengping Wang; Eyal Wurgaft; Maxim Rubin-Blum; Orit Sivan Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf, Biogeosciences, Volume 16 (2019) no. 16, p. 3165 | DOI:10.5194/bg-16-3165-2019
  • Meret Aeppli; Sanja Vranic; Ralf Kaegi; Ruben Kretzschmar; Ashley R. Brown; Andreas Voegelin; Thomas B. Hofstetter; Michael Sander Decreases in Iron Oxide Reducibility during Microbial Reductive Dissolution and Transformation of Ferrihydrite, Environmental Science Technology, Volume 53 (2019) no. 15, p. 8736 | DOI:10.1021/acs.est.9b01299
  • Luiza Notini; James M. Byrne; Elizabeth J. Tomaszewski; Drew E. Latta; Zhe Zhou; Michelle M. Scherer; Andreas Kappler Mineral Defects Enhance Bioavailability of Goethite toward Microbial Fe(III) Reduction, Environmental Science Technology, Volume 53 (2019) no. 15, p. 8883 | DOI:10.1021/acs.est.9b03208
  • Meret Aeppli; Ralf Kaegi; Ruben Kretzschmar; Andreas Voegelin; Thomas B. Hofstetter; Michael Sander Electrochemical Analysis of Changes in Iron Oxide Reducibility during Abiotic Ferrihydrite Transformation into Goethite and Magnetite, Environmental Science Technology, Volume 53 (2019) no. 7, p. 3568 | DOI:10.1021/acs.est.8b07190
  • Kyle A. Marquart; Ben R. Haller; Janet M. Paper; Theodore M. Flynn; Maxim I. Boyanov; Ganiyat Shodunke; Colleen Gura; Qusheng Jin; Matthew F. Kirk Influence of pH on the balance between methanogenesis and iron reduction, Geobiology, Volume 17 (2019) no. 2, p. 185 | DOI:10.1111/gbi.12320
  • Karen H. Johannesson; Ningfang Yang; Alexandra S. Trahan; Katherine Telfeyan; T. Jade Mohajerin; Segun B. Adebayo; Omolola A. Akintomide; Darren A. Chevis; Saugata Datta; Christopher D. White Biogeochemical and reactive transport modeling of arsenic in groundwaters from the Mississippi River delta plain: An analog for the As-affected aquifers of South and Southeast Asia, Geochimica et Cosmochimica Acta, Volume 264 (2019), p. 245 | DOI:10.1016/j.gca.2019.07.032
  • Jared L. Wilmoth; Alan J. Sexstone; Louis M. McDonald Humic Acid Buildup Increases Carbon Dioxide Emissions from Redox‐Oscillating Upland Soils while Catalyzing Iron(III) Reduction and Phosphorus Desorption, Journal of Environmental Quality, Volume 48 (2019) no. 6, p. 1614 | DOI:10.2134/jeq2019.01.0038
  • Kiran Upreti; Kanchan Maiti; Victor H. Rivera-Monroy Microbial mediated sedimentary phosphorus mobilization in emerging and eroding wetlands of coastal Louisiana, Science of The Total Environment, Volume 651 (2019), p. 122 | DOI:10.1016/j.scitotenv.2018.09.031
  • E.K. King; A. Thompson; J.C. Pett-Ridge Underlying lithology controls trace metal mobilization during redox fluctuations, Science of The Total Environment, Volume 665 (2019), p. 1147 | DOI:10.1016/j.scitotenv.2019.02.192
  • M. Usman; J. M. Byrne; A. Chaudhary; S. Orsetti; K. Hanna; C. Ruby; A. Kappler; S. B. Haderlein Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals, Chemical Reviews, Volume 118 (2018) no. 7, p. 3251 | DOI:10.1021/acs.chemrev.7b00224
  • Sydney M. Stewart; Thomas B. Hofstetter; Prachi Joshi; Christopher A. Gorski Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides, Environmental Science Technology, Volume 52 (2018) no. 10, p. 5600 | DOI:10.1021/acs.est.8b00481
  • Srishti Kashyap; Elizabeth C. Sklute; M. Darby Dyar; James F. Holden Reduction and Morphological Transformation of Synthetic Nanophase Iron Oxide Minerals by Hyperthermophilic Archaea, Frontiers in Microbiology, Volume 9 (2018) | DOI:10.3389/fmicb.2018.01550
  • Elizabeth K. Coward; Aaron Thompson; Alain F. Plante Contrasting Fe speciation in two humid forest soils: Insight into organomineral associations in redox-active environments, Geochimica et Cosmochimica Acta, Volume 238 (2018), p. 68 | DOI:10.1016/j.gca.2018.07.007
  • Jared Lee Wilmoth; Mary Ann Moran; Aaron Thompson Transient O2 pulses direct Fe crystallinity and Fe(III)-reducer gene expression within a soil microbiome, Microbiome, Volume 6 (2018) no. 1 | DOI:10.1186/s40168-018-0574-5
  • Hyojin Kim; Gary Stinchcomb; Susan L. Brantley Feedbacks among O2 and CO2 in deep soil gas, oxidation of ferrous minerals, and fractures: A hypothesis for steady-state regolith thickness, Earth and Planetary Science Letters, Volume 460 (2017), p. 29 | DOI:10.1016/j.epsl.2016.12.003
  • Chunmei Chen; Ravi K. Kukkadapu; Olesya Lazareva; Donald L. Sparks Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies, Environmental Science Technology, Volume 51 (2017) no. 14, p. 7903 | DOI:10.1021/acs.est.7b00700
  • Brian Ginn; Christof Meile; Jared Wilmoth; Yuanzhi Tang; Aaron Thompson Rapid Iron Reduction Rates Are Stimulated by High-Amplitude Redox Fluctuations in a Tropical Forest Soil, Environmental Science Technology, Volume 51 (2017) no. 6, p. 3250 | DOI:10.1021/acs.est.6b05709
  • Dinesh Adhikari; Qian Zhao; Kamol Das; Jacqueline Mejia; Rixiang Huang; Xilong Wang; Simon R. Poulson; Yuanzhi Tang; Eric E. Roden; Yu Yang Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction, Geochimica et Cosmochimica Acta, Volume 212 (2017), p. 221 | DOI:10.1016/j.gca.2017.06.017
  • Weihuang Zhu; Dan Yu; Mengran Shi; Yongtao Zhang; Tinglin Huang Quinone-Mediated Microbial Goethite Reduction and Transformation of Redox Mediator, Anthraquinone-2,6-Disulfonate (AQDS), Geomicrobiology Journal, Volume 34 (2017) no. 1, p. 27 | DOI:10.1080/01490451.2015.1137658
  • G.‐H. C. Ng; A. R. Yourd; N. W. Johnson; A. E. Myrbo Modeling hydrologic controls on sulfur processes in sulfate‐impacted wetland and stream sediments, Journal of Geophysical Research: Biogeosciences, Volume 122 (2017) no. 9, p. 2435 | DOI:10.1002/2017jg003822
  • Song-juan GAO; Wei-dong CAO; Ju-sheng GAO; Jing HUANG; Jin-shun BAI; Nao-hua ZENG; Dan-na CHANG; Katsuyoshi SHIMIZU Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China, Journal of Integrative Agriculture, Volume 16 (2017) no. 4, p. 959 | DOI:10.1016/s2095-3119(16)61509-5
  • Caleb E Levar; Colleen L Hoffman; Aubrey J Dunshee; Brandy M Toner; Daniel R Bond Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens, The ISME Journal, Volume 11 (2017) no. 3, p. 741 | DOI:10.1038/ismej.2016.146
  • Mo Chen; Hui-Qing Sun; He-Long Jiang The addition of FeOOH binds phosphate in organic matter-rich sediments, Chemistry and Ecology, Volume 32 (2016) no. 5, p. 432 | DOI:10.1080/02757540.2016.1150455
  • J. Starosvetsky; R. Kamari; Y. Farber; D. Bilanović; R. Armon Rust dissolution and removal by iron-reducing bacteria: A potential rehabilitation of rusted equipment, Corrosion Science, Volume 102 (2016), p. 446 | DOI:10.1016/j.corsci.2015.10.037
  • Daniel P. Maxbauer; Joshua M. Feinberg; David L. Fox Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: A review of magnetic methods and challenges, Earth-Science Reviews, Volume 155 (2016), p. 28 | DOI:10.1016/j.earscirev.2016.01.014
  • Christopher A. Gorski; Rebecca Edwards; Michael Sander; Thomas B. Hofstetter; Sydney M. Stewart Thermodynamic Characterization of Iron Oxide–Aqueous Fe2+ Redox Couples, Environmental Science Technology, Volume 50 (2016) no. 16, p. 8538 | DOI:10.1021/acs.est.6b02661
  • Shengnan Xu; Dinesh Adhikari; Rixiang Huang; Hua Zhang; Yuanzhi Tang; Eric Roden; Yu Yang Biochar-Facilitated Microbial Reduction of Hematite, Environmental Science Technology, Volume 50 (2016) no. 5, p. 2389 | DOI:10.1021/acs.est.5b05517
  • Qusheng Jin; Matthew F. Kirk Thermodynamic and Kinetic Response of Microbial Reactions to High CO2, Frontiers in Microbiology, Volume 7 (2016) | DOI:10.3389/fmicb.2016.01696
  • Tao Wu; Ravi K. Kukkadapu; Aron M. Griffin; Christopher A. Gorski; Hiromi Konishi; Huifang Xu; Eric E. Roden Interactions Between Fe(III)-Oxides and Fe(III)-Phyllosilicates During Microbial Reduction 1: Synthetic Sediments, Geomicrobiology Journal, Volume 33 (2016) no. 9, p. 793 | DOI:10.1080/01490451.2015.1117546
  • Aline Dia; Béatrice Lauga; Mélanie Davranche; Anne Fahy; Robert Duran; Bernd Nowack; Patrice Petitjean; Odile Henin; Sébastien Martin; Rémi Marsac; Gérard Gruau Bacteria-mediated reduction of As(V)-doped lepidocrocite in a flooded soil sample, Chemical Geology, Volume 406 (2015), p. 34 | DOI:10.1016/j.chemgeo.2015.04.008
  • Youbin Si; Yan Zou; Xiaohong Liu; Xiongyuan Si; Jingdong Mao Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria, Chemosphere, Volume 122 (2015), p. 206 | DOI:10.1016/j.chemosphere.2014.11.054
  • Aude Picard; Denis Testemale; Laura Wagenknecht; Rachael Hazael; Isabelle Daniel Iron reduction by the deep-sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions, Frontiers in Microbiology, Volume 5 (2015) | DOI:10.3389/fmicb.2014.00796
  • Min Luo; Cong-Sheng Zeng; Chuang Tong; Jia-Fang Huang; Qiang Yu; Yan-Bin Guo; Shu-Hua Wang Kinetics of Chemical and Microbial Iron Reduction Along an Inundation Gradient in a Tidal Marsh of the Min River Estuary, Southeastern China, Geomicrobiology Journal, Volume 32 (2015) no. 7, p. 635 | DOI:10.1080/01490451.2014.950362
  • Nilotpal Das; Latu Khanikar; Rajesh Shah; Aparna Das; Ritusmita Goswami; Manish Kumar; Kali Prasad Sarma Problem, Perspective and Challenges of Arsenic Contamination in the Groundwater of Brahmaputra Flood Plains and Barak Valley Regions of Assam, India, Safe and Sustainable Use of Arsenic-Contaminated Aquifers in the Gangetic Plain (2015), p. 65 | DOI:10.1007/978-3-319-16124-2_5
  • Mao-Xu Zhu; Liang-Jin Chen; Gui-Peng Yang; Chang-Qing Fan; Tie Li Kinetic characterization on reductive reactivity of iron(III) oxides in surface sediments of the East China Sea and the influence of repeated redox cycles: Implications for microbial iron reduction, Applied Geochemistry, Volume 42 (2014), p. 16 | DOI:10.1016/j.apgeochem.2014.01.001
  • Sanne Skov Nielsen; Peter Kjeldsen; Hans Christian Bruun Hansen; Rasmus Jakobsen Transformation of natural ferrihydrite aged in situ in As, Cr and Cu contaminated soil studied by reduction kinetics, Applied Geochemistry, Volume 51 (2014), p. 293 | DOI:10.1016/j.apgeochem.2014.10.014
  • A.V.C. Elliott; J.M. Plach; I.G. Droppo; L.A. Warren Collaborative microbial Fe-redox cycling by pelagic floc bacteria across wide ranging oxygenated aquatic systems, Chemical Geology, Volume 366 (2014), p. 90 | DOI:10.1016/j.chemgeo.2013.11.017
  • Chengshuai Liu; Yongkui Wang; Fangbai Li; Manjia Chen; Guangshu Zhai; Liang Tao; Chuanping Liu Influence of geochemical properties and land-use types on the microbial reduction of Fe(iii) in subtropical soils, Environ. Sci.: Processes Impacts, Volume 16 (2014) no. 8, p. 1938 | DOI:10.1039/c4em00217b
  • Ashley R. Brown; Paul L. Wincott; Jay A. LaVerne; Joe S. Small; David J. Vaughan; Simon M. Pimblott; Jonathan R. Lloyd The Impact of γ Radiation on the Bioavailability of Fe(III) Minerals for Microbial Respiration, Environmental Science Technology, Volume 48 (2014) no. 18, p. 10672 | DOI:10.1021/es503249r
  • Manjia Chen; Liang Tao; Fangbai Li; Qing Lan Reductions of Fe(III) and pentachlorophenol linked with geochemical properties of soils from Pearl River Delta, Geoderma, Volume 217-218 (2014), p. 201 | DOI:10.1016/j.geoderma.2013.12.003
  • Colleen M. Hansel; Christopher J. Lentini Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides, Microbial Metal and Metalloid Metabolism (2014), p. 91 | DOI:10.1128/9781555817190.ch6
  • Manjia Chen; Chengshuai Liu; Xiaomin Li; Weilin Huang; Fangbai Li Iron Reduction Coupled to Reductive Dechlorination in Red Soil, Soil Science, Volume 179 (2014) no. 10-11, p. 457 | DOI:10.1097/ss.0000000000000095
  • Tongxu Liu; Wei Zhang; Xiaomin Li; Fangbai Li; Wei Zhang; Weijun Shen Kinetics of Competitive Reduction of Nitrate and Iron Oxides byAeromonas hydrophilaHS01, Soil Science Society of America Journal, Volume 78 (2014) no. 6, p. 1903 | DOI:10.2136/sssaj2014.04.0164
  • Mélanie Davranche; Aline Dia; Mohamad Fakih; Bernd Nowack; Gérard Gruau; Georges Ona-nguema; Patrice Petitjean; Sébastien Martin; Rebecca Hochreutener Organic matter control on the reactivity of Fe(III)-oxyhydroxides and associated As in wetland soils: A kinetic modeling study, Chemical Geology, Volume 335 (2013), p. 24 | DOI:10.1016/j.chemgeo.2012.10.040
  • Kim M. Handley; Joyce M. McBeth; John M. Charnock; David J. Vaughan; Paul L. Wincott; David A. Polya; Jonathan R. Lloyd Effect of iron redox transformations on arsenic solid-phase associations in an arsenic-rich, ferruginous hydrothermal sediment, Geochimica et Cosmochimica Acta, Volume 102 (2013), p. 124 | DOI:10.1016/j.gca.2012.10.024
  • Karen H. Johannesson; Klaus Neumann Geochemical cycling of mercury in a deep, confined aquifer: Insights from biogeochemical reactive transport modeling, Geochimica et Cosmochimica Acta, Volume 106 (2013), p. 25 | DOI:10.1016/j.gca.2012.12.010
  • Weihuang Zhu; Yangang Nan; Tinglin Huang; Fengchang Wu The Mechanism, Thermodynamic and Kinetic Characteristics of the Microbial Reduction of Goethite Mediated by Anthraquinone-2-Sulfonate, Geomicrobiology Journal, Volume 30 (2013) no. 10, p. 928 | DOI:10.1080/01490451.2013.791356
  • Mathew P. Watts; Jonathan R. Lloyd Bioremediation via Microbial Metal Reduction, Microbial Metal Respiration (2013), p. 161 | DOI:10.1007/978-3-642-32867-1_7
  • Yi-Liang Li Hexagonal Platelet-like Magnetite as a Biosignature of Thermophilic Iron-Reducing Bacteria and Its Applications to the Exploration of the Modern Deep, Hot Biosphere and the Emergence of Iron-Reducing Bacteria in Early Precambrian Oceans, Astrobiology, Volume 12 (2012) no. 12, p. 1100 | DOI:10.1089/ast.2012.0847
  • J.A. Bourdoiseau; R. Sabot; M. Jeannin; F. Termemil; Ph. Refait Determination of standard Gibbs free energy of formation of green rusts and its application to the Fe(II–III) hydroxy-oxalate, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 410 (2012), p. 72 | DOI:10.1016/j.colsurfa.2012.06.020
  • Tao Wu; Evgenya Shelobolina; Huifang Xu; Hiromi Konishi; Ravi Kukkadapu; Eric E. Roden Isolation and Microbial Reduction of Fe(III) Phyllosilicates from Subsurface Sediments, Environmental Science Technology, Volume 46 (2012) no. 21, p. 11618 | DOI:10.1021/es302639n
  • D. LIU; H. DONG; M. E. BISHOP; J. ZHANG; H. WANG; S. XIE; S. WANG; L. HUANG; D. D. EBERL Microbial reduction of structural iron in interstratified illite‐smectite minerals by a sulfate‐reducing bacterium, Geobiology, Volume 10 (2012) no. 2, p. 150 | DOI:10.1111/j.1472-4669.2011.00307.x
  • Aude Picard; Denis Testemale; Jean-Louis Hazemann; Isabelle Daniel The influence of high hydrostatic pressure on bacterial dissimilatory iron reduction, Geochimica et Cosmochimica Acta, Volume 88 (2012), p. 120 | DOI:10.1016/j.gca.2012.04.030
  • Xiaomin Li; Tongxu Liu; Fangbai Li; Wei Zhang; Shungui Zhou; Yongtao Li Reduction of structural Fe(III) in oxyhydroxides by Shewanella decolorationis S12 and characterization of the surface properties of iron minerals, Journal of Soils and Sediments, Volume 12 (2012) no. 2, p. 217 | DOI:10.1007/s11368-011-0433-5
  • Aaron J. Coby; Flynn Picardal; Evgenya Shelobolina; Huifang Xu; Eric E. Roden Repeated Anaerobic Microbial Redox Cycling of Iron, Applied and Environmental Microbiology, Volume 77 (2011) no. 17, p. 6036 | DOI:10.1128/aem.00276-11
  • Tong-xu Liu; Xiao-min Li; Fang-bai Li; Wei Zhang; Man-jia Chen; Shun-gui Zhou Reduction of iron oxides by Klebsiella pneumoniae L17: Kinetics and surface properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 379 (2011) no. 1-3, p. 143 | DOI:10.1016/j.colsurfa.2010.11.061
  • Aaron Thompson; Denis G. Rancourt; Oliver A. Chadwick; Jon Chorover Iron solid-phase differentiation along a redox gradient in basaltic soils, Geochimica et Cosmochimica Acta, Volume 75 (2011) no. 1, p. 119 | DOI:10.1016/j.gca.2010.10.005
  • John M. Zachara; Ravi K. Kukkadapu; Tanya Peretyazhko; Mark Bowden; Chongmin Wang; Dave W. Kennedy; Dean Moore; Bruce Arey The mineralogic transformation of ferrihydrite induced by heterogeneous reaction with bioreduced anthraquinone disulfonate (AQDS) and the role of phosphate, Geochimica et Cosmochimica Acta, Volume 75 (2011) no. 21, p. 6330 | DOI:10.1016/j.gca.2011.06.030
  • Mathieu Pédrot; Ange Le Boudec; Mélanie Davranche; Aline Dia; Odile Henin How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?, Journal of Colloid and Interface Science, Volume 359 (2011) no. 1, p. 75 | DOI:10.1016/j.jcis.2011.03.067
  • Qusheng Jin; Eric E. Roden Microbial physiology-based model of ethanol metabolism in subsurface sediments, Journal of Contaminant Hydrology, Volume 125 (2011) no. 1-4, p. 1 | DOI:10.1016/j.jconhyd.2011.04.002
  • Yi-Liang Li; San-Yuan Zhu; Kun Deng Mössbauer hyperfine parameters of iron species in the course of Geobacter-mediated magnetite mineralization, Physics and Chemistry of Minerals, Volume 38 (2011) no. 9, p. 701 | DOI:10.1007/s00269-011-0443-2
  • Luke H. MacDonald; Hee Sun Moon; Peter R. Jaffé The role of biomass, electron shuttles, and ferrous iron in the kinetics of Geobacter sulfurreducens-mediated ferrihydrite reduction, Water Research, Volume 45 (2011) no. 3, p. 1049 | DOI:10.1016/j.watres.2010.10.017
  • Irina Kouznetsova; Xiaomin Mao; Clare Robinson; D.A. Barry; Jason I. Gerhard; Perry L. McCarty Biological reduction of chlorinated solvents: Batch-scale geochemical modeling, Advances in Water Resources, Volume 33 (2010) no. 9, p. 969 | DOI:10.1016/j.advwatres.2010.04.017
  • Y. Thomas He; Arthur G. Fitzmaurice; Azra Bilgin; Sunkyung Choi; Peggy O’Day; John Horst; James Harrington; H. James Reisinger; David R. Burris; Janet G. Hering Geochemical processes controlling arsenic mobility in groundwater: A case study of arsenic mobilization and natural attenuation, Applied Geochemistry, Volume 25 (2010) no. 1, p. 69 | DOI:10.1016/j.apgeochem.2009.10.002
  • Julian Bosch; Katja Heister; Thilo Hofmann; Rainer U. Meckenstock Nanosized Iron Oxide Colloids Strongly Enhance Microbial Iron Reduction, Applied and Environmental Microbiology, Volume 76 (2010) no. 1, p. 184 | DOI:10.1128/aem.00417-09
  • Christine M. Fennessey; Morris E. Jones; Martial Taillefert; Thomas J. DiChristina Siderophores Are Not Involved in Fe(III) Solubilization during Anaerobic Fe(III) Respiration by Shewanella oneidensis MR-1, Applied and Environmental Microbiology, Volume 76 (2010) no. 8, p. 2425 | DOI:10.1128/aem.03066-09
  • Maria C. Portillo; Juan M. Gonzalez Differential Effects of Distinct Bacterial Biofilms in a Cave Environment, Current Microbiology, Volume 60 (2010) no. 6, p. 435 | DOI:10.1007/s00284-009-9561-1
  • Morris E. Jones; Christine M. Fennessey; Thomas J. DiChristina; Martial Taillefert Shewanella oneidensis MR‐1 mutants selected for their inability to produce soluble organic‐Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor, Environmental Microbiology, Volume 12 (2010) no. 4, p. 938 | DOI:10.1111/j.1462-2920.2009.02137.x
  • Hailiang Dong Mineral-microbe interactions: a review, Frontiers of Earth Science in China, Volume 4 (2010) no. 2, p. 127 | DOI:10.1007/s11707-010-0022-8
  • Everett C. Salas; William M. Berelson; Douglas E. Hammond; Anthony R. Kampf; Kenneth H. Nealson The impact of bacterial strain on the products of dissimilatory iron reduction, Geochimica et Cosmochimica Acta, Volume 74 (2010) no. 2, p. 574 | DOI:10.1016/j.gca.2009.10.039
  • Eileen B. Ekstrom; Deric R. Learman; Andrew S. Madden; Colleen M. Hansel Contrasting effects of Al substitution on microbial reduction of Fe(III) (hydr)oxides, Geochimica et Cosmochimica Acta, Volume 74 (2010) no. 24, p. 7086 | DOI:10.1016/j.gca.2010.09.008
  • Daniel R. Bond Electrodes as Electron Acceptors, and the Bacteria Who Love Them, Geomicrobiology: Molecular and Environmental Perspective (2010), p. 385 | DOI:10.1007/978-90-481-9204-5_18
  • Jiao Zhao; Yilin Fang; Timothy D. Scheibe; Derek R. Lovley; R. Mahadevan Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments, Journal of Contaminant Hydrology, Volume 112 (2010) no. 1-4, p. 30 | DOI:10.1016/j.jconhyd.2009.10.002
  • Yeunook Bae; Jae-Woo Park TCE reduction modeling in soil column: Effect of zero-valent iron, ferrous iron, and iron-reducing bacteria, Desalination and Water Treatment, Volume 4 (2009) no. 1-3, p. 229 | DOI:10.5004/dwt.2009.487
  • R.S. Cutting; V.S. Coker; J.W. Fellowes; J.R. Lloyd; D.J. Vaughan Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens, Geochimica et Cosmochimica Acta, Volume 73 (2009) no. 14, p. 4004 | DOI:10.1016/j.gca.2009.04.009
  • Kunaljeet S. Tanwar; Sarah C. Petitto; Sanjit K. Ghose; Peter J. Eng; Thomas P. Trainor Fe(II) adsorption on hematite (0001), Geochimica et Cosmochimica Acta, Volume 73 (2009) no. 15, p. 4346 | DOI:10.1016/j.gca.2009.04.024
  • Klaus-Holger Knorr; Gunnar Lischeid; Christian Blodau Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation, Geoderma, Volume 153 (2009) no. 3-4, p. 379 | DOI:10.1016/j.geoderma.2009.08.023
  • Everett Cossio Salas; William M. Berelson; Douglas E. Hammond; Anthony R. Kampf; Kenneth H. Nealson The Influence of Carbon Source on the Products of Dissimilatory Iron Reduction, Geomicrobiology Journal, Volume 26 (2009) no. 7, p. 451 | DOI:10.1080/01490450903060806
  • Janet G. Hering; Peggy A. O'Day; Robert G. Ford; Y. Thomas He; Azra Bilgin; H. James Reisinger; David R. Burris MNA as a Remedy for Arsenic Mobilized by Anthropogenic Inputs of Organic Carbon, Groundwater Monitoring Remediation, Volume 29 (2009) no. 3, p. 84 | DOI:10.1111/j.1745-6592.2009.01242.x
  • Clare Robinson; D.A. Barry; Perry L. McCarty; Jason I. Gerhard; Irina Kouznetsova pH control for enhanced reductive bioremediation of chlorinated solvent source zones, Science of The Total Environment, Volume 407 (2009) no. 16, p. 4560 | DOI:10.1016/j.scitotenv.2009.03.029
  • Klaus-Holger Knorr; Christian Blodau Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil, Soil Biology and Biochemistry, Volume 41 (2009) no. 6, p. 1187 | DOI:10.1016/j.soilbio.2009.02.030
  • Mohamad Fakih; Mélanie Davranche; Aline Dia; Bernd Nowack; Patrice Petitjean; Xavier Châtellier; Gérard Gruau A new tool for in situ monitoring of Fe-mobilization in soils, Applied Geochemistry, Volume 23 (2008) no. 12, p. 3372 | DOI:10.1016/j.apgeochem.2008.07.016
  • Edward J. O’Loughlin Effects of Electron Transfer Mediators on the Bioreduction of Lepidocrocite (γ-FeOOH) by Shewanella putrefaciens CN32, Environmental Science Technology, Volume 42 (2008) no. 18, p. 6876 | DOI:10.1021/es800686d
  • J. R. LLOYD; C. I. PEARCE; V. S. COKER; R. A. D. PATTRICK; G. VAN DER LAAN; R. CUTTING; D. J. VAUGHAN; M. PATERSON‐BEEDLE; I. P. MIKHEENKO; P. YONG; L. E. MACASKIE Biomineralization: linking the fossil record to the production of high value functional materials, Geobiology, Volume 6 (2008) no. 3, p. 285 | DOI:10.1111/j.1472-4669.2008.00162.x
  • Lena Mazeina; Alexandra Navrotsky; Darby Dyar Enthalpy of formation of sulfate green rusts, Geochimica et Cosmochimica Acta, Volume 72 (2008) no. 4, p. 1143 | DOI:10.1016/j.gca.2007.11.032
  • Craig M. Bethke; Dong Ding; Qusheng Jin; Robert A. Sanford Origin of microbiological zoning in groundwater flows, Geology, Volume 36 (2008) no. 9, p. 739 | DOI:10.1130/g24859a.1
  • Eric E. Roden Microbiological Controls on Geochemical Kinetics 1: Fundamentals and Case Study on Microbial Fe(III) Oxide Reduction, Kinetics of Water-Rock Interaction (2008), p. 335 | DOI:10.1007/978-0-387-73563-4_8
  • Theodore M. Flynn; Robert A. Sanford; Craig M. Bethke Attached and suspended microbial communities in a pristine confined aquifer, Water Resources Research, Volume 44 (2008) no. 7 | DOI:10.1029/2007wr006633
  • Stefanie L. Whitmire; Stephen K. Hamilton Rates of anaerobic microbial metabolism in wetlands of divergent hydrology on a glacial landscape, Wetlands, Volume 28 (2008) no. 3, p. 703 | DOI:10.1672/06-126.1
  • S. Sevinç Şengör; Nicolas F. Spycher; Timothy R. Ginn; Rajesh K. Sani; Brent Peyton Biogeochemical reactive–diffusive transport of heavy metals in Lake Coeur d’Alene sediments, Applied Geochemistry, Volume 22 (2007) no. 12, p. 2569 | DOI:10.1016/j.apgeochem.2007.06.011
  • Tomoyuki Hori; Matthias Noll; Yasuo Igarashi; Michael W. Friedrich; Ralf Conrad Identification of Acetate-Assimilating Microorganisms under Methanogenic Conditions in Anoxic Rice Field Soil by Comparative Stable Isotope Probing of RNA, Applied and Environmental Microbiology, Volume 73 (2007) no. 1, p. 101 | DOI:10.1128/aem.01676-06
  • HEIDI A. CROSBY; ERIC E. RODEN; CLARK M. JOHNSON; BRIAN L. BEARD The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens, Geobiology, Volume 5 (2007) no. 2, p. 169 | DOI:10.1111/j.1472-4669.2007.00103.x
  • Martial Taillefert; Jordon S. Beckler; Elizabeth Carey; Justin L. Burns; Christine M. Fennessey; Thomas J. DiChristina Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides, Journal of Inorganic Biochemistry, Volume 101 (2007) no. 11-12, p. 1760 | DOI:10.1016/j.jinorgbio.2007.07.020
  • Youbo SU; Takuro SHINANO; Erry PURNOMO; Mitsuru OSAKI Growth promotion of rice by inoculation of acid-tolerant, N2-fixing bacteria isolated from acid sulfate paddy soil in South Kalimantan, Indonesia, Tropics, Volume 16 (2007) no. 3, p. 261 | DOI:10.3759/tropics.16.261

Cité par 129 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: