[Sur les propriétés de Gibbs de la mesure d'Erdös]
Nous considérons les mesures obtenues comme une convolution d'une infinité de mesures de Bernoulli (convolutions de Bernoulli) liées à la β-numération. Une décomposition matricielle markovienne de ces mesures est établie, quand β est un nombre de Pisot dont le β-shift associé est de type fini. Nous concluons en démontrant que la mesure d'Erdös (i.e., quand β est le nombre d'or) est faiblement de Gibbs, assurant ainsi que le formalisme multifractal est valide.
We consider the infinite convolved Bernoulli measures (Bernoulli convolutions) related to β-numeration. A Markovian matrix decomposition of these measures is obtained when β is a Pisot number whose associated β-shift is of finite type. We study the special case of the Erdös measure (i.e., when β is the golden ratio) that we prove to be weak Gibbs, insuring the multifractal formalism to hold.
Accepté le :
Publié le :
Eric Olivier 1
@article{CRMATH_2003__336_1_63_0, author = {Eric Olivier}, title = {On the {Gibbs} properties of the {Erd\"os} measure}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--68}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00002-X}, language = {en}, }
Eric Olivier. On the Gibbs properties of the Erdös measure. Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 63-68. doi : 10.1016/S1631-073X(02)00002-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00002-X/
[1] Fat baker's transformations, Ergodic Theory Dynamical Systems, Volume 4 (1984), pp. 1-23
[2] On a family of Bernoulli convolutions, Amer. J. Math., Volume 61 (1939), pp. 974-976
[3] D.-J. Feng, E. Olivier, Multifractal analysis of the weak Gibbs measures and phase transition – application to some Bernoulli convolutions, Ergodic Theory Dynamical Systems, 2001, submitted
[4] Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc., Volume 38 (1935), pp. 48-88
[5] Lq-spectrum of the Bernoulli convolution associated with the Golden Ratio, Stud. Math., Volume 131 (1998), pp. 17-29
[6] A dimension formula for Bernoulli convolution, J. Statist. Phys., Volume 76 (1994), pp. 225-251
[7] E. Olivier, N. Sidorov, A. Thomas, On the Gibbs properties of Bernoulli convolutions related to β-numeration, Preprint CUHK, 2002
[8] Sixty years of Bernoulli convolutions, Progr. Probab., 46, Birkhäuser, 2000, pp. 40-65
[9] Ergodic properties of the Erdös measure, the entropy of the Golden Shift and related problems, Monatsh. Math., Volume 126 (1998), pp. 215-261
[10] Zeta functions for certain non-hyperbolic systems and topological Markov approximations, Ergodic Theory Dynamical Systems, Volume 17 (1997), pp. 997-1000
Cité par Sources :
Commentaires - Politique