We consider the infinite convolved Bernoulli measures (Bernoulli convolutions) related to β-numeration. A Markovian matrix decomposition of these measures is obtained when β is a Pisot number whose associated β-shift is of finite type. We study the special case of the Erdös measure (i.e., when β is the golden ratio) that we prove to be weak Gibbs, insuring the multifractal formalism to hold.
Nous considérons les mesures obtenues comme une convolution d'une infinité de mesures de Bernoulli (convolutions de Bernoulli) liées à la β-numération. Une décomposition matricielle markovienne de ces mesures est établie, quand β est un nombre de Pisot dont le β-shift associé est de type fini. Nous concluons en démontrant que la mesure d'Erdös (i.e., quand β est le nombre d'or) est faiblement de Gibbs, assurant ainsi que le formalisme multifractal est valide.
Accepted:
Published online:
Eric Olivier 1
@article{CRMATH_2003__336_1_63_0, author = {Eric Olivier}, title = {On the {Gibbs} properties of the {Erd\"os} measure}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--68}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00002-X}, language = {en}, }
Eric Olivier. On the Gibbs properties of the Erdös measure. Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 63-68. doi : 10.1016/S1631-073X(02)00002-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00002-X/
[1] Fat baker's transformations, Ergodic Theory Dynamical Systems, Volume 4 (1984), pp. 1-23
[2] On a family of Bernoulli convolutions, Amer. J. Math., Volume 61 (1939), pp. 974-976
[3] D.-J. Feng, E. Olivier, Multifractal analysis of the weak Gibbs measures and phase transition – application to some Bernoulli convolutions, Ergodic Theory Dynamical Systems, 2001, submitted
[4] Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc., Volume 38 (1935), pp. 48-88
[5] Lq-spectrum of the Bernoulli convolution associated with the Golden Ratio, Stud. Math., Volume 131 (1998), pp. 17-29
[6] A dimension formula for Bernoulli convolution, J. Statist. Phys., Volume 76 (1994), pp. 225-251
[7] E. Olivier, N. Sidorov, A. Thomas, On the Gibbs properties of Bernoulli convolutions related to β-numeration, Preprint CUHK, 2002
[8] Sixty years of Bernoulli convolutions, Progr. Probab., 46, Birkhäuser, 2000, pp. 40-65
[9] Ergodic properties of the Erdös measure, the entropy of the Golden Shift and related problems, Monatsh. Math., Volume 126 (1998), pp. 215-261
[10] Zeta functions for certain non-hyperbolic systems and topological Markov approximations, Ergodic Theory Dynamical Systems, Volume 17 (1997), pp. 997-1000
Cited by Sources:
Comments - Policy