[Résolutions de Beilinson sur espaces projectifs à poids]
On étend aux espaces projectifs à poids le théorème de Beilinson [Funct. Anal. Appl. 12 (1978) 214–216], qui décrit la catégorie derivée bornée des faisceaux cohérents sur
Beilinson's theorem [Funct. Anal. Appl. 12 (1978) 214–216], which describes the bounded derived category of coherent sheaves on
Accepté le :
Publié le :
Alberto Canonaco 1
@article{CRMATH_2003__336_1_35_0, author = {Alberto Canonaco}, title = {Beilinson resolutions on weighted projective spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {35--40}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00004-3}, language = {en}, }
Alberto Canonaco. Beilinson resolutions on weighted projective spaces. Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 35-40. doi : 10.1016/S1631-073X(02)00004-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00004-3/
[1] Tilting sheaves in representation theory of algebras, Manuscripta Math., Volume 60 (1988), pp. 323-347
[2] Coherent sheaves on
[3] The derived category of coherent sheaves on
[4] A Beilinson-type theorem for coherent sheaves on weighted projective spaces, J. Algebra, Volume 225 (2000), pp. 28-46
[5] A. Canonaco, Beilinson resolutions on weighted projective spaces, Preprint, 2001
[6] Weighted projective varieties, Proc. Vancouver 1981, Lecture Notes in Math., 956, Springer, 1982, pp. 34-71
[7] Residues and Duality, Lecture Notes in Math., 20, Springer, Heidelberg, 1966
[8] Des catégories derivées des catégories abéliennes, Astérisque, Volume 239 (1996)
- A short proof of the Hanlon-Hicks-Lazarev theorem, Forum of Mathematics, Sigma, Volume 12 (2024), p. 6 (Id/No e56) | DOI:10.1017/fms.2024.40 | Zbl:1546.13025
- The algebraic theory of Fuchsian singularities, Advances in representation theory of algebras, ARTA VII. Conference in honor of José Antonio de la Peña's 60th birthday, Instituto de Matemáticas, Universidad Nacional Autónoma de Mexico City, Mexico, September 24–28, 2018, Providence, RI: American Mathematical Society (AMS); Montreal: Centre de Recherches Mathématiques (CRM), 2021, pp. 171-190 | DOI:10.1090/conm/761/15315 | Zbl:1481.14004
- Beilinson resolutions on weighted projective spaces., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 336 (2003) no. 1, pp. 35-40 | DOI:10.1016/s1631-073x(02)00004-3 | Zbl:1042.18011
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique