Comptes Rendus
Ordinary Differential Equations
On the normal form of a system of differential equations with nilpotent linear part
[Forme normale d'un système d'équations différentielles à partie linéaire nilpotente]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 129-134.

We consider prenormal forms associated to generic perturbations of the system x˙=2y,y˙=3x2. It is known that they have a formal normal form x˙=2y+2xΔ*,y˙=3x2+3yΔ*, where Δ*=x+A0(y2-x3) [Differential Equations 158 (1) (1999) 152–173]. We show that the series A0 and the normalizing transformations are divergent, but 1-summable.

On considère des formes prénormales associées à des perturbations génériques du système x˙=2y,y˙=3x2. Il est connu qu'elles admettent une forme normale formelle x˙=2y+2xΔ*,y˙=3x2+3yΔ*, où Δ*=x+A0(y2-x3) [Differential Equations 158 (1) (1999) 152–173]. Nous démontrons que A0 et les transformations normalisantes sont divergentes, mais 1-sommable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)00022-5

Mireille Canalis-Durand 1 ; Reinhard Schäfke 2

1 GREQAM, Université d'Aix-Marseille III, 13002 Marseille, France
2 IRMA, Université Louis Pasteur, 67084 Strasbourg cedex, France
@article{CRMATH_2003__336_2_129_0,
     author = {Mireille Canalis-Durand and Reinhard Sch\"afke},
     title = {On the normal form of a system of differential equations with nilpotent linear part},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {129--134},
     publisher = {Elsevier},
     volume = {336},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00022-5},
     language = {en},
}
TY  - JOUR
AU  - Mireille Canalis-Durand
AU  - Reinhard Schäfke
TI  - On the normal form of a system of differential equations with nilpotent linear part
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 129
EP  - 134
VL  - 336
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)00022-5
LA  - en
ID  - CRMATH_2003__336_2_129_0
ER  - 
%0 Journal Article
%A Mireille Canalis-Durand
%A Reinhard Schäfke
%T On the normal form of a system of differential equations with nilpotent linear part
%J Comptes Rendus. Mathématique
%D 2003
%P 129-134
%V 336
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)00022-5
%G en
%F CRMATH_2003__336_2_129_0
Mireille Canalis-Durand; Reinhard Schäfke. On the normal form of a system of differential equations with nilpotent linear part. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 129-134. doi : 10.1016/S1631-073X(02)00022-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00022-5/

[1] Handbook of Mathematical Functions (M. Abramowitz; I.A. Stegun, eds.), Dover, New York, 1964

[2] M. Canalis-Durand; F. Michel; M. Teisseyre Algorithms for formal reduction of vector fields singularities, J. Dynamical Control Systems, Volume 7 (2001) no. 1, pp. 101-125

[3] D. Cerveau; R. Moussu Groupes d'automorphismes de (,0) et équations différentielles ydy+=0, Publ. Soc. Math. France, Volume 116 (1988), pp. 459-488

[4] J. Ecalle Les fonctions résurgentes. III : L'équation du pont et la classification analytique des objets locaux, Publ. Math. Orsay 85-05, 1985

[5] F. Loray Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, Differential Equations, Volume 158 (1999) no. 1, pp. 152-173

[6] F.W.J. Olver Asymptotics and Special Functions, Academic Press, New York, 1974

[7] J.-P. Ramis Les séries k-sommables et leurs applications, Complex Analysis, Microlocal Calcul and Relativistic Quantum Theory, Lecture Notes in Phys., 126, 1980, pp. 178-199

  • Majid Gazor; Fahimeh Mokhtari Volume-preserving normal forms of Hopf-zero singularity, Nonlinearity, Volume 26 (2013) no. 10, p. 2809 | DOI:10.1088/0951-7715/26/10/2809
  • Ewa Stróżyna; Henryk Żoładek Divergence of the reduction to the multidimensional nilpotent Takens normal form, Nonlinearity, Volume 24 (2011) no. 11, p. 3129 | DOI:10.1088/0951-7715/24/11/007
  • Henryk Żołądek Analytic Ordinary Differential Equations and Their Local Classification, Ordinary Differential Equations, Volume 4 (2008), p. 593 | DOI:10.1016/s1874-5725(08)80011-9
  • Mireille Canalis-Durand; Reinhard Schäfke Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 13 (2004) no. 4, pp. 493-513 | DOI:10.5802/afst.1079 | Zbl:1169.34339
  • Mireille Canalis-Durand Gevrey normal form of systems of differential equations with a nilpotent linear part, From combinatorics to dynamical systems. Journées de calcul formel en l'honneur de Jean Thomann, Marseille, France, March 22–23, 2002, Berlin: de Gruyter, 2003, pp. 131-162 | Zbl:1045.34013

Cité par 5 documents. Sources : Crossref, zbMATH

Commentaires - Politique