[Forme normale d'un système d'équations différentielles à partie linéaire nilpotente]
On considère des formes prénormales associées à des perturbations génériques du système . Il est connu qu'elles admettent une forme normale formelle , où [Differential Equations 158 (1) (1999) 152–173]. Nous démontrons que A0 et les transformations normalisantes sont divergentes, mais 1-sommable.
We consider prenormal forms associated to generic perturbations of the system . It is known that they have a formal normal form , where [Differential Equations 158 (1) (1999) 152–173]. We show that the series A0 and the normalizing transformations are divergent, but 1-summable.
Accepté le :
Publié le :
Mireille Canalis-Durand 1 ; Reinhard Schäfke 2
@article{CRMATH_2003__336_2_129_0, author = {Mireille Canalis-Durand and Reinhard Sch\"afke}, title = {On the normal form of a system of differential equations with nilpotent linear part}, journal = {Comptes Rendus. Math\'ematique}, pages = {129--134}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(02)00022-5}, language = {en}, }
TY - JOUR AU - Mireille Canalis-Durand AU - Reinhard Schäfke TI - On the normal form of a system of differential equations with nilpotent linear part JO - Comptes Rendus. Mathématique PY - 2003 SP - 129 EP - 134 VL - 336 IS - 2 PB - Elsevier DO - 10.1016/S1631-073X(02)00022-5 LA - en ID - CRMATH_2003__336_2_129_0 ER -
Mireille Canalis-Durand; Reinhard Schäfke. On the normal form of a system of differential equations with nilpotent linear part. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 129-134. doi : 10.1016/S1631-073X(02)00022-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00022-5/
[1] Handbook of Mathematical Functions (M. Abramowitz; I.A. Stegun, eds.), Dover, New York, 1964
[2] Algorithms for formal reduction of vector fields singularities, J. Dynamical Control Systems, Volume 7 (2001) no. 1, pp. 101-125
[3] Groupes d'automorphismes de et équations différentielles , Publ. Soc. Math. France, Volume 116 (1988), pp. 459-488
[4] Les fonctions résurgentes. III : L'équation du pont et la classification analytique des objets locaux, Publ. Math. Orsay 85-05, 1985
[5] Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, Differential Equations, Volume 158 (1999) no. 1, pp. 152-173
[6] Asymptotics and Special Functions, Academic Press, New York, 1974
[7] Les séries k-sommables et leurs applications, Complex Analysis, Microlocal Calcul and Relativistic Quantum Theory, Lecture Notes in Phys., 126, 1980, pp. 178-199
Cité par Sources :
Commentaires - Politique