[Forme normale d'un système d'équations différentielles à partie linéaire nilpotente]
We consider prenormal forms associated to generic perturbations of the system
On considère des formes prénormales associées à des perturbations génériques du système
Accepté le :
Publié le :
Mireille Canalis-Durand 1 ; Reinhard Schäfke 2
@article{CRMATH_2003__336_2_129_0, author = {Mireille Canalis-Durand and Reinhard Sch\"afke}, title = {On the normal form of a system of differential equations with nilpotent linear part}, journal = {Comptes Rendus. Math\'ematique}, pages = {129--134}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(02)00022-5}, language = {en}, }
TY - JOUR AU - Mireille Canalis-Durand AU - Reinhard Schäfke TI - On the normal form of a system of differential equations with nilpotent linear part JO - Comptes Rendus. Mathématique PY - 2003 SP - 129 EP - 134 VL - 336 IS - 2 PB - Elsevier DO - 10.1016/S1631-073X(02)00022-5 LA - en ID - CRMATH_2003__336_2_129_0 ER -
Mireille Canalis-Durand; Reinhard Schäfke. On the normal form of a system of differential equations with nilpotent linear part. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 129-134. doi : 10.1016/S1631-073X(02)00022-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00022-5/
[1] Handbook of Mathematical Functions (M. Abramowitz; I.A. Stegun, eds.), Dover, New York, 1964
[2] Algorithms for formal reduction of vector fields singularities, J. Dynamical Control Systems, Volume 7 (2001) no. 1, pp. 101-125
[3] Groupes d'automorphismes de
[4] Les fonctions résurgentes. III : L'équation du pont et la classification analytique des objets locaux, Publ. Math. Orsay 85-05, 1985
[5] Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, Differential Equations, Volume 158 (1999) no. 1, pp. 152-173
[6] Asymptotics and Special Functions, Academic Press, New York, 1974
[7] Les séries k-sommables et leurs applications, Complex Analysis, Microlocal Calcul and Relativistic Quantum Theory, Lecture Notes in Phys., 126, 1980, pp. 178-199
- Volume-preserving normal forms of Hopf-zero singularity, Nonlinearity, Volume 26 (2013) no. 10, p. 2809 | DOI:10.1088/0951-7715/26/10/2809
- Divergence of the reduction to the multidimensional nilpotent Takens normal form, Nonlinearity, Volume 24 (2011) no. 11, p. 3129 | DOI:10.1088/0951-7715/24/11/007
- Analytic Ordinary Differential Equations and Their Local Classification, Ordinary Differential Equations, Volume 4 (2008), p. 593 | DOI:10.1016/s1874-5725(08)80011-9
- Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 13 (2004) no. 4, pp. 493-513 | DOI:10.5802/afst.1079 | Zbl:1169.34339
- Gevrey normal form of systems of differential equations with a nilpotent linear part, From combinatorics to dynamical systems. Journées de calcul formel en l'honneur de Jean Thomann, Marseille, France, March 22–23, 2002, Berlin: de Gruyter, 2003, pp. 131-162 | Zbl:1045.34013
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique