Comptes Rendus
Probabilités
Diffraction et mesure de Palm des processus ponctuels
Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 57-62.

En faisant appel à la notion de mesure de Palm, nous établissons l'existence de la mesure de diffraction pour tout processus ponctuel stationnaire et ergodique. Nous obtenons des caractérisations précises de ces mesures dans le cas de processus particuliers : sous-ensembles aléatoires de d, ensembles obtenus par la méthode « cut-and-project ».

Using the notion of Palm measure, we prove the existence of the diffraction measure of all stationary and ergodic point processes. We get precise expressions of those measures in the case of specific processes: stochastic subsets of d, sets obtained by the “cut-and-project” method.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)00029-8

Jean-Baptiste Gouéré 1

1 LaPCS, Université Claude Bernard Lyon I, bâtiment recherche [B], 50, avenue Tony-Garnier, Domaine de Gerland, 69366 Lyon cedex 07, France
@article{CRMATH_2003__336_1_57_0,
     author = {Jean-Baptiste Gou\'er\'e},
     title = {Diffraction et mesure de {Palm} des processus ponctuels},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {57--62},
     publisher = {Elsevier},
     volume = {336},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00029-8},
     language = {fr},
}
TY  - JOUR
AU  - Jean-Baptiste Gouéré
TI  - Diffraction et mesure de Palm des processus ponctuels
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 57
EP  - 62
VL  - 336
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)00029-8
LA  - fr
ID  - CRMATH_2003__336_1_57_0
ER  - 
%0 Journal Article
%A Jean-Baptiste Gouéré
%T Diffraction et mesure de Palm des processus ponctuels
%J Comptes Rendus. Mathématique
%D 2003
%P 57-62
%V 336
%N 1
%I Elsevier
%R 10.1016/S1631-073X(02)00029-8
%G fr
%F CRMATH_2003__336_1_57_0
Jean-Baptiste Gouéré. Diffraction et mesure de Palm des processus ponctuels. Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 57-62. doi : 10.1016/S1631-073X(02)00029-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00029-8/

[1] M. Baake, Diffraction of weighted lattice subsets, Preprint, 2002

[2] M. Baake; M. Höffe Diffraction of random tilings: some rigorous results, J. Statist. Phys., Volume 99 (2000) no. 1–2, pp. 216-261

[3] M. Baake; R.V. Moody Diffractive point sets with entropy, J. Phys. A, Volume 31 (1998) no. 45, pp. 9023-9039

[4] R. Burton; R. Pemantle Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab., Volume 21 (1993) no. 3, pp. 1329-1371

[5] I.P. Cornfeld; S.V. Fomin; Ya.G. Sinaı̆ Ergodic Theory, Springer-Verlag, New York, 1982 (Translated from Russian by A.B. Sosinskiı̆)

[6] M.E. Fisher; J. Stephenson Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers, Phys. Rev., Volume 132 (1963) no. 2, pp. 1411-1431

[7] A. Hof Diffraction by aperiodic structures at high temperatures, J. Phys. A, Volume 28 (1995) no. 1, pp. 57-62

[8] A. Hof On diffraction by aperiodic structures, Comm. Math. Phys., Volume 169 (1995) no. 1, pp. 25-43

[9] O. Kallenberg Random Measures, Akademie-Verlag, Berlin, 1986

[10] R. Kenyon Local statistics of lattice dimers, Ann. Inst. H. Poincaré Probab. Statist., Volume 33 (1997) no. 5, pp. 591-618

[11] Y. Meyer Quasicrystals, Diophantine approximation and algebraic numbers, Beyond Quasicrystals, Les Houches, 1994, Springer, Berlin, 1995, pp. 3-16

[12] J. Møller Lectures on Random Voronoı̆ Tessellations, Springer-Verlag, New York, 1994

[13] R.V. Moody Meyer sets and their duals, The Mathematics of Long-Range Aperiodic Order, Waterloo, ON, 1995, Kluwer Academic, Dordrecht, 1997, pp. 403-441

[14] R.V. Moody, Model sets: a survey, Preprint, 2001

[15] R.V. Moody Uniform distribution in model sets, Canadian Math. Bull., Volume 45 (2002) no. 1, pp. 123-130

[16] J. Neveu Processus ponctuels, École d'Été de Probabilités de Saint-Flour, VI-1976, Lecture Notes in Math., 598, Springer-Verlag, Berlin, 1977, pp. 249-445

[17] M. Schlottmann Generalized model sets and dynamical systems, Directions in Mathematical Quasicrystals, American Mathematical Society, Providence, RI, 2000, pp. 143-159

[18] D. Shechtman; I. Blech; D. Gratias; J.W. Cahn Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953

[19] B. Solomyak Spectrum of dynamical systems arising from Delone sets, Quasicrystals and Discrete Geometry, Toronto, ON, 1995, American Mathematical Society, Providence, RI, 1998, pp. 265-275

[20] N. Wiener The ergodic theorem, Duke Math., Volume 5 (1939), pp. 1-18

  • Daniel Lenz; Timo Spindeler; Nicolae Strungaru Abstract almost periodicity for group actions on uniform topological spaces, Canadian Journal of Mathematics, Volume 76 (2024) no. 3, p. 798 | DOI:10.4153/s0008414x23000226
  • Nicolae Strungaru Fourier transformable measures with weak Meyer set support and their lift to the cut-and-project scheme, Canadian Mathematical Bulletin, Volume 66 (2023) no. 3, p. 1044 | DOI:10.4153/s0008439523000164
  • Timo Spindeler; Nicolae Strungaru On the (dis)continuity of the Fourier transform of measures, Journal of Mathematical Analysis and Applications, Volume 499 (2021) no. 2, p. 125062 | DOI:10.1016/j.jmaa.2021.125062
  • Michael Baake; Daniel Lenz Spectral notions of aperiodic order, Discrete Continuous Dynamical Systems - S, Volume 10 (2017) no. 2, p. 161 | DOI:10.3934/dcdss.2017009
  • DANIEL LENZ; ROBERT V. MOODY Stationary processes and pure point diffraction, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 8, p. 2597 | DOI:10.1017/etds.2016.12
  • Shigeki Akiyama; Jeong-Yup Lee Algorithm for determining pure pointedness of self-affine tilings, Advances in Mathematics, Volume 226 (2011) no. 4, p. 2855 | DOI:10.1016/j.aim.2010.07.019
  • Shigeki Akiyama; Jeong-Yup Lee Determining quasicrystal structures on substitution tilings, Philosophical Magazine, Volume 91 (2011) no. 19-21, p. 2709 | DOI:10.1080/14786435.2010.513694
  • Daniel Lenz; Nicolae Strungaru Pure point spectrum for measure dynamical systems on locally compact Abelian groups, Journal de Mathématiques Pures et Appliquées, Volume 92 (2009) no. 4, p. 323 | DOI:10.1016/j.matpur.2009.05.013
  • Jeong-Yup Lee; Boris Solomyak Pure Point Diffractive Substitution Delone Sets Have the Meyer Property, Discrete Computational Geometry, Volume 39 (2008) no. 1-3, p. 319 | DOI:10.1007/s00454-008-9054-1
  • D. Lenz Aperiodic order and pure point diffraction, Philosophical Magazine, Volume 88 (2008) no. 13-15, p. 2059 | DOI:10.1080/14786430802082008
  • Jeong-Yup Lee Substitution Delone sets with pure point spectrum are inter-model sets, Journal of Geometry and Physics, Volume 57 (2007) no. 11, p. 2263 | DOI:10.1016/j.geomphys.2007.07.003
  • Daniel Lenz; Christoph Richard Pure point diffraction and cut and project schemes for measures: the smooth case, Mathematische Zeitschrift, Volume 256 (2007) no. 2, p. 347 | DOI:10.1007/s00209-006-0077-0
  • J.-Y. Lee Quasicrystals and model sets on substitution point sets, Philosophical Magazine, Volume 86 (2006) no. 6-8, p. 915 | DOI:10.1080/14786430500290838
  • Jean-Baptiste Gouéré Quasicrystals and Almost Periodicity, Communications in Mathematical Physics, Volume 255 (2005) no. 3, p. 655 | DOI:10.1007/s00220-004-1271-8

Cité par 14 documents. Sources : Crossref

Commentaires - Politique