[Vibration d'une coque élastique mince pré-contrainte I]
On étudie la vibration d'une coque élastique pré-contrainte par grand déplacement en petites déformations. Dans cette première Note on modélise la vibration et on démontre l'existence des solutions et la régularité intérieure. On termine par une étude de la régularité sur le bord, laquelle est connue pour intervenir dans la dérivée par rapport au domaine dans les équations hyperboliques.
We study the vibration of an elastic thin shell which is pre-constrained by a large displacement with a small deformation. In this first Note we prove the solutions exist and we investigate both the interior regularity and the boundary regularity which is known to be important in the shape differentiation of hyperbolic equations.
Révisé le :
Publié le :
John Cagnol 1 ; Jean-Paul Zolésio 2
@article{CRMATH_2002__334_2_161_0, author = {John Cagnol and Jean-Paul Zol\'esio}, title = {Vibration of a pre-constrained elastic thin shell {I:} {Modeling} and regularity of the solutions}, journal = {Comptes Rendus. Math\'ematique}, pages = {161--166}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02182-9}, language = {en}, }
TY - JOUR AU - John Cagnol AU - Jean-Paul Zolésio TI - Vibration of a pre-constrained elastic thin shell I: Modeling and regularity of the solutions JO - Comptes Rendus. Mathématique PY - 2002 SP - 161 EP - 166 VL - 334 IS - 2 PB - Elsevier DO - 10.1016/S1631-073X(02)02182-9 LA - en ID - CRMATH_2002__334_2_161_0 ER -
John Cagnol; Jean-Paul Zolésio. Vibration of a pre-constrained elastic thin shell I: Modeling and regularity of the solutions. Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 161-166. doi : 10.1016/S1631-073X(02)02182-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02182-9/
[1] , Representation and Control of Infinite Dimensional Systems, 1, Birkhäuser, 1993
[2] Hidden shape derivative in the wave equation (P. Khan; I. Lasiecka; M. Polis, eds.), System Modelling and Optimization, Addison-Wesley–Longman, 1998, pp. 42-52
[3] Hidden shape derivative in the wave equation with Dirichlet boundary condition, C. R. Acad. Sci. Paris, Série I, Volume 326 (1998) no. 9, pp. 1079-1084
[4] Shape derivative in the wave equation with Dirichlet boundary conditions, J. Differential Equations, Volume 158 (1999) no. 2, pp. 175-210
[5] Hidden boundary smoothness in hyperbolic tangential problems of nonsmooth domains (P. Khan; I. Lasiecka; M. Polis, eds.), System Modelling and Optimization, Addison-Wesley–Longman, 1998
[6] Mecanique, Vol. I. Ellipses, École Polytechnique, 1986
[7] Introduction to Shape Optimization, SCM, 16, Springer-Verlag, 1991
Cité par Sources :
Commentaires - Politique