[Théorème d'unicité et de dépendence continue des solutions par rapport aux conditions initiales pour une classe de problèmes non linéaires de coques peu profondes]
Dans cette Note, nous nous intéressons au modèle introduit en 1966 par W.T. Koiter, puis étudié par M. Bernadou et J.T. Oden. Nous démontrons l'unicité de la solution du modèle dynamique et que cette solution est continue par rapport aux conditions initiales.
This note is concerned with the non-linear shallow shell model introduced in 1966 by W.T. Koiter, and later studied by M. Bernadou and J.T. Oden. We show the uniqueness of the solution to the dynamical model and that this solution is continuous with respect to the initial data.
Accepté le :
Publié le :
John Cagnol 1 ; Irena Lasiecka 2 ; Catherine Lebiedzik 3 ; Richard Marchand 4
@article{CRMATH_2006__342_9_711_0, author = {John Cagnol and Irena Lasiecka and Catherine Lebiedzik and Richard Marchand}, title = {Uniqueness and continuous dependence on the initial data for a class of non-linear shallow shell problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {711--716}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.02.034}, language = {en}, }
TY - JOUR AU - John Cagnol AU - Irena Lasiecka AU - Catherine Lebiedzik AU - Richard Marchand TI - Uniqueness and continuous dependence on the initial data for a class of non-linear shallow shell problems JO - Comptes Rendus. Mathématique PY - 2006 SP - 711 EP - 716 VL - 342 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2006.02.034 LA - en ID - CRMATH_2006__342_9_711_0 ER -
%0 Journal Article %A John Cagnol %A Irena Lasiecka %A Catherine Lebiedzik %A Richard Marchand %T Uniqueness and continuous dependence on the initial data for a class of non-linear shallow shell problems %J Comptes Rendus. Mathématique %D 2006 %P 711-716 %V 342 %N 9 %I Elsevier %R 10.1016/j.crma.2006.02.034 %G en %F CRMATH_2006__342_9_711_0
John Cagnol; Irena Lasiecka; Catherine Lebiedzik; Richard Marchand. Uniqueness and continuous dependence on the initial data for a class of non-linear shallow shell problems. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 711-716. doi : 10.1016/j.crma.2006.02.034. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.034/
[1] Méthodes d'Eléments Finis pour les Problèmes de Coques Minces, Masson, Paris, 1994
[2] An existence theorem for a class of nonlinear shallow shell problems, J. Math. Pures Appl. (9), Volume 60 (1981) no. 3, pp. 285-308
[3] Uniform stability in structural acoustic models with flexible curved walls, J. Differential Equations, Volume 186 (2002) no. 1, pp. 88-121
[4] J. Cagnol, I. Lasiecka, C. Lebiedzik, R. Marchand, Hadamard wellposedness for a class of non-linear shallow shell problems, ESILV, DER-CS RR-28, Pôle Universitaire L. de Vinci, Paris La Défense, France, 2005
[5] Mathematical Elasticity, vol. III: Theory of Shells, Stud. Math. Appl., vol. 29, North-Holland Publishing Co., Amsterdam, 2000
[6] M.C. Delfour, J.-P. Zolésio, Intrinsic differential geometry and theory of thin shells, in press
[7] Differential equations for linear shells: comparison between intrinsic and classical models, Adv. Math. Sci., CRM Proc. Lect. Notes, vol. 11, Amer. Math. Soc., 1997, pp. 41-124
[8] Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity—full von Karman systems, Progr. Nonlinear Differential Equations Appl., Volume 50 (2002), pp. 197-216
[9] On the nonlinear theory of thin elastic shells. III, Nederl. Akad. Wetensch. Proc. Ser. B, Volume 69 (1966), pp. 33-54
[10] Problèmes aux limites non homogènes et applications, Dunod, 1968
[11] Foundations of elastic shell theory, Progr. Solid Mech., vol. IV, North-Holland, Amsterdam, 1963, pp. 1-90
[12] Nonlinear theories for thin shells, Quart. Appl. Math., Volume 21 (1963), pp. 21-36
[13] On the uniqueness theorem for generalized solutions of initial-boundary problems for the Marguerre–Vlasov of shallow shells with clamped boundary conditions, Appl. Math. Optim., Volume 39 (1999) no. 3, pp. 309-326
Cité par Sources :
Commentaires - Politique