[Vibration d'une coque élastique mince pré-contrainte II]
On étudie la vibration d'une coque élastique pré-contrainte par grand déplacement en petites déformations. Dans cette seconde partie on donne un modèle p(d,∞) en géométrie intrinsèque. On tire avantage de l'exactitude du modèle pour l'existence et la régularité de ses solutions.
We study the vibration of an elastic thin shell which is pre-constrained by a large displacement with a small deformation. In this second Note we come up with an exact model p(d,∞) in intrinsic geometry. We take advantage of the exactness of the model for the existence and regularity of its the solutions.
Révisé le :
Publié le :
John Cagnol 1 ; Jean-Paul Zolésio 2
@article{CRMATH_2002__334_3_251_0, author = {John Cagnol and Jean-Paul Zol\'esio}, title = {Vibration of a pre-constrained elastic thin shell {II:} {Intrinsic} exact model}, journal = {Comptes Rendus. Math\'ematique}, pages = {251--256}, publisher = {Elsevier}, volume = {334}, number = {3}, year = {2002}, doi = {10.1016/S1631-073X(02)02183-0}, language = {en}, }
TY - JOUR AU - John Cagnol AU - Jean-Paul Zolésio TI - Vibration of a pre-constrained elastic thin shell II: Intrinsic exact model JO - Comptes Rendus. Mathématique PY - 2002 SP - 251 EP - 256 VL - 334 IS - 3 PB - Elsevier DO - 10.1016/S1631-073X(02)02183-0 LA - en ID - CRMATH_2002__334_3_251_0 ER -
John Cagnol; Jean-Paul Zolésio. Vibration of a pre-constrained elastic thin shell II: Intrinsic exact model. Comptes Rendus. Mathématique, Volume 334 (2002) no. 3, pp. 251-256. doi : 10.1016/S1631-073X(02)02183-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02183-0/
[1] Coque fluide intrinsèque sans approximation géométrique, C. R. Acad. Sci. Paris, Série I, Volume 326 (1998) no. 11, pp. 1341-1346
[2] , Representation and Control of Infinite Dimensional Systems, 1, Birkhäuser, 1993
[3] Vibration of a pre-constrained elastic thin shell, I: Modelling and regularity of the solutions, C. R. Acad. Sci. Paris, Série I, Volume 33 (2002) no. 4
[4] J. Cagnol, J.-P. Zolésio, Vibration of a pre-constrained elastic thin shell. Modeling, regularity and intrinsic exact model, Rapport de recherche ESILV, DER-CS, No RR-4, 2001
[5] Shape analysis via distance functions: Local theory, Summer School on Boundaries, Interfaces, and Transitions, Banff, Alberta, Canada, CRM, American Mathematical Society, 1995
[6] Mecanique, Vol. I, Ellipses, École Polytechnique, 1986
Cité par Sources :
Commentaires - Politique