[On small Lebesgue spaces and their applications]
We prove some new properties of the small Lebesgue spaces introduced by Fiorenza [7]. Combining these properties with the Poincaré–Sobolev inequalities for the relative rearrangement (see [11]), we derive some new and precises estimates either for small Lebesgue–Sobolev spaces or for quasilinear equations with data in the small Lebesgue spaces.
On se propose d'établir quelques propriétés des petits espaces de Lebesgue introduits par Fiorenza [7], notamment la convergence monotone de Lévi et des propriétés d'équivalence de normes. En combinant ces propriétés avec les inégalités de Poincaré–Sobolev pour le réarrangement relatif [11], nous donnons quelques estimations précises concernant les espaces de Sobolev associés à ces espaces et les régularités des solutions d'équations quasilinéaires lorsque les données sont dans ces espaces.
Revised:
Published online:
Alberto Fiorenza 1; Jean-Michel Rakotoson 2
@article{CRMATH_2002__334_1_23_0, author = {Alberto Fiorenza and Jean-Michel Rakotoson}, title = {Petits espaces de {Lebesgue} et quelques applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {23--26}, publisher = {Elsevier}, volume = {334}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02199-4}, language = {fr}, }
Alberto Fiorenza; Jean-Michel Rakotoson. Petits espaces de Lebesgue et quelques applications. Comptes Rendus. Mathématique, Volume 334 (2002) no. 1, pp. 23-26. doi : 10.1016/S1631-073X(02)02199-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02199-4/
[1] Sulle migliori costanti di maggiorazione per una classe di equazioni ellitiche degeneri, Ricerche Mat., Volume 27 (1978), pp. 413-428
[2] Sobolev imbedding into BMO, VMO, L∞, Ark. Mat., Volume 36 (1998), pp. 317-340
[3] Symmetrization techniques on unbounded domains: Application to a chemotaxis system on , J. Differential Equations, Volume 145 (1998) no. 1, pp. 156-183
[4] On the differentiability of functions in , Proc. Amer. Math. Soc., Volume 91 (1984) no. 2, pp. 326-328
[5] L∞ estimates for nonlinear elliptic problems with p-growth in the gradient, J. Inequal. Appl., Volume 3 (1999), pp. 109-125
[6] Some relations between pseudo-rearrangement and relative rearrangement, Nonlinear Anal., Volume 41 (2000) no. 7–8, pp. 855-869
[7] Duality and reflexivity in grand Lebesgue spaces, Collect. Math., Volume 51 (2000) no. 2, pp. 131-148
[8] Regularity and comparison results in Grand Sobolev spaces for parabolic equations with measure data, Appl. Math. Lett., Volume 14 (2001), pp. 979-981
[9] On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., Volume 119 (1992), pp. 129-143
[10] Directional derivate of the increasing rearrangement mapping and application to a queer differential equation in plasma physics, Duke Math. J., Volume 48 (1981), pp. 475-495
[11] Rakotoson J.M., General pointwise relations for the relative rearrangement and applications (to appear)
[12] Rakotoson J.M., Some new applications of the pointwise relations for the relative rearrangement, Differential Integral Equations (to appear)
[13] A co-area formula with applications to monotone rearrangement and to regularity, Arch. Rational Mech. Anal., Volume 109 (1990) no. 3, pp. 213-238
[14] Editor's note, On the differentiability of functions in , Ann. Math., Volume 113 (1981) no. 2, pp. 381-385
Cited by Sources:
Comments - Policy