Nous considérons un échantillon (X1,Y1),…,(Xn,Yn) de répliques indépendantes de (X,Y), où X est une v.a. possédant une densité conditionnellement à une v.a. discrète Y prenant les valeurs 0 ou 1. Nous estimons la régression dichotomique
We consider a Nadaraya–Watson-type nonparametric estimator
Révisé le :
Publié le :
Gérard Derzko 1 ; Paul Deheuvels 2
@article{CRMATH_2002__334_1_59_0, author = {G\'erard Derzko and Paul Deheuvels}, title = {Estimation non-param\'etrique de la r\'egression dichotomique {\textendash} application biom\'edicale}, journal = {Comptes Rendus. Math\'ematique}, pages = {59--63}, publisher = {Elsevier}, volume = {334}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02202-1}, language = {fr}, }
TY - JOUR AU - Gérard Derzko AU - Paul Deheuvels TI - Estimation non-paramétrique de la régression dichotomique – application biomédicale JO - Comptes Rendus. Mathématique PY - 2002 SP - 59 EP - 63 VL - 334 IS - 1 PB - Elsevier DO - 10.1016/S1631-073X(02)02202-1 LA - fr ID - CRMATH_2002__334_1_59_0 ER -
Gérard Derzko; Paul Deheuvels. Estimation non-paramétrique de la régression dichotomique – application biomédicale. Comptes Rendus. Mathématique, Volume 334 (2002) no. 1, pp. 59-63. doi : 10.1016/S1631-073X(02)02202-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02202-1/
[1] Théorie de l'estimation fonctionnelle, Economica, Paris, 1987
[2] Functional limit laws for the increments of Kaplan–Meier product-limit processes and applications, Ann. Probab., Volume 28 (2000), pp. 1301-1335
[3] Functional laws of the iterated logarithm for the increments of empirical and quantile processes, Ann. Probab., Volume 22 (1992), pp. 1619-1661
[4] Une approche intrinsèque de l'estimation non paramétrique de la densité, C. R. Acad. Sci. Paris, Série I, Volume 327 (1998), pp. 985-988
[5] Nonparametric Density Estimation: The L1 View, Wiley, New York, 1985
[6] An empirical approach to the uniform consistency of kernel-type function estimators, J. Theoret. Probab., Volume 13 (2000), pp. 1-37
[7] Generalized Additive Models, Chapman and Hall, London, 1990
[8] Generalized Linear Models, Chapman and Hall, London, 1989
[9] On estimating regression, Theoret. Probab. Appl., Volume 9 (1964), pp. 141-142
[10] Curve estimates, Ann. Math. Statist., Volume 42 (1971), pp. 1815-1841
[11] Multivariate Density Estimation, Theory, Practice, and Visualization, Wiley, New York, 1992
[12] Nonparametric Probability Density Estimation, John Hopkins University Press, Baltimore, 1978
[13] Smooth regression analysis, Sankhyā, Volume 26 (1964), pp. 359-372
- Uniform-in-bandwidth consistency results in the partially linear additive model components estimation, Communications in Statistics. Theory and Methods, Volume 53 (2024) no. 9, pp. 3383-3424 | DOI:10.1080/03610926.2022.2153605 | Zbl:7859013
- Some uniform consistency results in the partially linear additive model components estimation, Communications in Statistics. Theory and Methods, Volume 45 (2016) no. 5, pp. 1278-1310 | DOI:10.1080/03610926.2013.861491 | Zbl:1337.62100
- Uniform convergence of nonparametric regressions in competing risk models with right censoring, Statistics Probability Letters, Volume 81 (2011) no. 11, pp. 1654-1663 | DOI:10.1016/j.spl.2011.06.008 | Zbl:1227.62023
- Asymptotic Certainty Bands for Kernel Density Estimators Based upon a Bootstrap Resampling Scheme, Statistical Models and Methods for Biomedical and Technical Systems (2008), p. 171 | DOI:10.1007/978-0-8176-4619-6_13
Cité par 4 documents. Sources : Crossref, zbMATH
Commentaires - Politique