[Relational model of second order linear logic]
We define a purely relational model of second order linear logic. In the absence of any notion of coherence, we will especially concentrate on establishing a normal form theorem that will give rise to the interpretation of the second order quantifiers.
On construit un modèle purement relationnel de la logique linéaire du second ordre. En l'absence de toute notion de cohérence, on s'attachera tout particulièrement à établir un théorème de forme normale qui permettra d'interpréter les quantificateurs du second ordre.
Accepted:
Published online:
Alexandra Bruasse-Bac 1
@article{CRMATH_2002__334_2_93_0, author = {Alexandra Bruasse-Bac}, title = {Mod\`ele relationnel de la logique lin\'eaire du second ordre}, journal = {Comptes Rendus. Math\'ematique}, pages = {93--96}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02229-X}, language = {fr}, }
Alexandra Bruasse-Bac. Modèle relationnel de la logique linéaire du second ordre. Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 93-96. doi : 10.1016/S1631-073X(02)02229-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02229-X/
[1] Bruasse-Bac A., On phase semantics and denotational semantics: the second order, Prépublication IML n∘ 2000-29
[2] Bruasse-Bac A., Logique linéaire indexée du second ordre, Thèse de doctorat, Université Aix-Marseille II, 2001
[3] On phase semantics and denotational semantics: the exponentials, Ann. Pure Appl. Logic (2000)
[4] The system F of variable types: fifteen years later, Theoret. Comput. Sci. (1986)
[5] Proofs and Types, Cambridge University Press, 1989
Cited by Sources:
Comments - Policy