[Integration par parties sur Ponts de Bessel et EDPS correspondantes]
We prove integration by parts formulae with respect to the law of Bessel Bridges of dimension δ⩾3. For δ=3 we have an infinite-dimensional boundary measure, and for δ>3 a singular logarithmic derivative. We give applications to SPDEs with additive space-time white noise and singular drifts, whose solutions are non-negative.
Nous prouvons des formules d'intégration par parties par rapport à la loi des Ponts de Bessel de dimension δ⩾3. Remarquons que dans le cas δ=3 nous obtenons une mesure de bord infini-dimensionelle, et pour δ>3 une dérivée logarithmique singulière. Nous donnerons aussi des applications à des EDPS avec bruit blanc en espace-temps et termes de dérive singuliers, dont les solutions sont non-négatives.
Accepté le :
Publié le :
Lorenzo Zambotti 1
@article{CRMATH_2002__334_3_209_0, author = {Lorenzo Zambotti}, title = {Integration by parts on {Bessel} {Bridges} and related stochastic partial differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {209--212}, publisher = {Elsevier}, volume = {334}, number = {3}, year = {2002}, doi = {10.1016/S1631-073X(02)02254-9}, language = {en}, }
Lorenzo Zambotti. Integration by parts on Bessel Bridges and related stochastic partial differential equations. Comptes Rendus. Mathématique, Volume 334 (2002) no. 3, pp. 209-212. doi : 10.1016/S1631-073X(02)02254-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02254-9/
[1] Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin–New York, 1994
[2] Fluctuations for ∇φ interface model on a wall, Stoch. Processes Appl., Volume 94 (2001), pp. 1-27
[3] Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Springer-Verlag, Berlin, 1992
[4] Stochastic Analysis, Springer, Berlin, 1997
[5] Long-time existence for signed solutions of the heat equation with a noise term, Probab. Theory Related Fields, Volume 110 (1998), pp. 51-68
[6] The critical exponent for a stochastic PDE to hit zero, Stochastic Analysis, Control, Optimization and Applications, Systems Control Found. Appl., Birkhäuser Boston, 1999, pp. 325-338
[7] White noise driven quasilinear SPDEs with reflection, Probab. Theory Related Fields, Volume 93 (1992), pp. 77-89
[8] Continuous Martingales and Brownian Motion, Springer-Verlag, 1991
[9] A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel Bridge, J. Funct. Anal., Volume 180 (2001), pp. 195-209
- Preventing finite-time blowup in a constrained potential for reaction-diffusion equations, Stochastic Processes and their Applications, Volume 185 (2025), p. 11 (Id/No 104627) | DOI:10.1016/j.spa.2025.104627 | Zbl:8036353
- Tree-valued resampling dynamics martingale problems and applications, Probability Theory and Related Fields, Volume 155 (2013) no. 3-4, pp. 789-838 | DOI:10.1007/s00440-012-0413-8 | Zbl:1379.60099
- Tree-valued Fleming-Viot dynamics with mutation and selection, The Annals of Applied Probability, Volume 22 (2012) no. 6, pp. 2560-2615 | DOI:10.1214/11-aap831 | Zbl:1316.92048
- Asymptotic Evolution of Acyclic Random Mappings, Electronic Journal of Probability, Volume 12 (2007) no. none | DOI:10.1214/ejp.v12-437
- Subtree prune and regraft: a reversible real tree-valued Markov process, The Annals of Probability, Volume 34 (2006) no. 3, pp. 918-961 | DOI:10.1214/009117906000000034 | Zbl:1101.60054
- Integration by parts on
-Bessel bridges, , and related SPDEs, The Annals of Probability, Volume 31 (2003) no. 1, pp. 323-348 | DOI:10.1214/aop/1046294313 | Zbl:1019.60062
Cité par 6 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier