Soit Rm (respectivement RM) le rayon du plus grand (respectivement plus petit) disque centré à l'origine et inclus dans (respectivement contenant) la cellule typique de la mosaı̈que de Poisson–Voronoi deux-dimensionnelle. Dans ce travail, nous obtenons la loi conjointe de Rm et RM. Pour cela nous faisons appel à des techniques classiques de recouvrement du cercle dûes à Stevens, Siegel et Holst ainsi qu'à une conjecture de Siegel que nous démontrons. Le calcul des probabilités conditionnelles permet de préciser le caractère circulaire des cellules typiques de Poisson–Voronoi admettant un « grand » disque inscrit.
Denote by Rm (respectively RM) the radius of the largest (respectively smallest) disk centered at the origin and included in (respectively containing) the typical cell of the two-dimensional Poisson–Voronoi tessellation. In this article, we obtain the joint distribution of Rm and RM. This result is derived from the covering properties of the circle due to Stevens, Siegel and Holst. The computation of the conditional probabilities reveals the circular property of the Poisson–Voronoi typical cells having a “large” in-disk.
Accepté le :
Publié le :
Pierre Calka 1
@article{CRMATH_2002__334_4_325_0, author = {Pierre Calka}, title = {La loi du plus petit disque contenant la cellule typique de {Poisson{\textendash}Voronoi}}, journal = {Comptes Rendus. Math\'ematique}, pages = {325--330}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02261-6}, language = {fr}, }
Pierre Calka. La loi du plus petit disque contenant la cellule typique de Poisson–Voronoi. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 325-330. doi : 10.1016/S1631-073X(02)02261-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02261-6/
[1] Fr. Baccelli, B. Blaszczyszyn, On a coverage process ranging from the Boolean model to the Poisson–Voronoi tessellation with applications to wireless communications, Rapport de recherche INRIA No 4019, October, 2000
[2] On a Voronoi aggregative process related to a bivariate Poisson rocess, Adv. Appl. Probab., Volume 28 (1996) no. 4, pp. 965-981
[3] Random subdivisions of space into crystals, Ann. Math. Statist., Volume 33 (1962), pp. 958-972
[4] On the spectral function of the Poisson–Voronoi cells, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001) no. 9, pp. 835-840
[5] Le spectre de certaines mosaı̈ques poissoniennes du plan et l'enveloppe convexe du pont brownien, Probab. Theory Related Fields, Volume 105 (1996) no. 1, pp. 57-83
[6] On the probability of covering the circle by random arcs, J. Appl. Probab., Volume 24 (1987) no. 2, pp. 422-429
[7] Thermal conductivity of polycristalline materials, J. Amer. Cer. Soc., Volume 78 (1995) no. 3, pp. 728-736
[8] Lectures on Random Voronoi Tessellations, Springer-Verlag, New York, 1994
[9] Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, Chichester, 1992 (With a foreword by D.G. Kendall)
[10] Mathematical Ecology, Wiley-Interscience, New York, 1977
[11] Covering the circle with random arcs, Israel J. Math., Volume 11 (1972), pp. 328-345
[12] Random space filling and moments of coverage in geometrical probability, J. Appl. Probab., Volume 15 (1978) no. 2, pp. 340-355
[13] Covering the circle with random arcs of random sizes, J. Appl. Probab., Volume 19 (1982) no. 2, pp. 373-381
[14] Fragmenting the Universe III. The construction and statistics of 3-D Voronoi tessellations, Astronom. Astrophys., Volume 283 (1994), pp. 361-406
Cité par Sources :
Commentaires - Politique