[Sur certaines équations completement nonlinéaires invariantes par transformation conforme]
We outline proofs of our results in [7] on Liouville type theorems, Harnack type inequalities, and existence and compactness of solutions to some conformally invariant fully nonlinear elliptic equations of second order on locally conformally flat Riemannian manifolds. Details will appear in [7].
On présente des résultats de type Liouville, des inégalités de type Harnack ainsi que d'existence et de compacité de solutions pour certaines équations elliptiques du second ordre, complètement nonlinéaires, sur des variétés Riemanniennes localement conformément plates. Les démonstrations détaillées sont contenues dans [7].
Publié le :
Aobing Li 1 ; YanYan Li 1
@article{CRMATH_2002__334_4_305_0, author = {Aobing Li and YanYan Li}, title = {On some conformally invariant fully nonlinear equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {305--310}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02264-1}, language = {en}, }
Aobing Li; YanYan Li. On some conformally invariant fully nonlinear equations. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 305-310. doi : 10.1016/S1631-073X(02)02264-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02264-1/
[1] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., Volume 42 (1989), pp. 271-297
[2] The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985), pp. 261-301
[3] S.Y.A. Chang, M. Gursky, P. Yang, An equation of Monge–Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. (to appear)
[4] S.Y.A. Chang, M. Gursky, P. Yang, An a priori estimate for a fully nonlinear equation on four-manifolds, Preprint
[5] Symmetry and related properties via the maximum principle, Comm. Math. Phys., Volume 68 (1979), pp. 209-243
[6] P. Guan, G. Wang, Local estimates for a class of fully nonlinear equations arising from conformal geometry, Preprint
[7] A. Li, Y.Y. Li, On some conformally invariant fully nonlinear equations (in preparation)
[8] Some existence results of fully nonlinear elliptic equations of Monge–Ampere type, Comm. Pure Appl. Math., Volume 43 (1990), pp. 233-271
[9] Y.Y. Li, L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. Anal. Math. (to appear)
[10] The conjecture on conformal transformations of Riemannian manifolds, J. Differential Geom., Volume 6 (1971), pp. 247-258
[11] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495
[12] On the number of constant scalar curvature metrics in a conformal class (H.B. Lawson; K. Tenenblat, eds.), Differential Geometry: A Symposium in Honor of Manfredo Do Carmo, Wiley, 1991, pp. 311-320
[13] R. Schoen, Courses at Stanford University, 1988, and New York University, 1989
[14] Hessian measures II, Ann. of Math., Volume 150 (1999), pp. 579-604
[15] J. Viaclovsky, Estimates and existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom. (to appear)
[16] Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J., Volume 101 (2000), pp. 283-316
[17] Conformally invariant Monge–Ampere equations: global solutions, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 4371-4379
- An Obata-type formula and the Liouville-type theorem for a class of K-Hessian equations on the sphere, Proceedings of the American Mathematical Society, Volume 152 (2024) no. 8, p. 3537 | DOI:10.1090/proc/16857
- Harnack type inequalities for conformal scalar curvature equation, Mathematische Annalen, Volume 339 (2007) no. 1, p. 195 | DOI:10.1007/s00208-007-0112-4
- Removability of singularities for a class of fully non-linear elliptic equations, Calculus of Variations and Partial Differential Equations, Volume 27 (2006) no. 4, p. 439 | DOI:10.1007/s00526-006-0026-0
- Convexity and singularities of curvature equations in conformal geometry, International Mathematics Research Notices (2006) | DOI:10.1155/imrn/2006/96890
- Classification of singularities for a subcritical fully nonlinear problem, Pacific Journal of Mathematics, Volume 226 (2006) no. 1, p. 83 | DOI:10.2140/pjm.2006.226.83
- On some conformally invariant fully nonlinear equations, II. Liouville, Harnack and Yamabe, Acta Mathematica, Volume 195 (2005) no. 1, p. 117 | DOI:10.1007/bf02588052
- Singular sets of a class of locally conformally flat manifolds, Duke Mathematical Journal, Volume 129 (2005) no. 3 | DOI:10.1215/s0012-7094-05-12934-9
- Volume comparison and the σk-Yamabe problem, Advances in Mathematics, Volume 187 (2004) no. 2, p. 447 | DOI:10.1016/j.aim.2003.08.014
- On some conformally invariant fully nonlinear equations, Communications on Pure and Applied Mathematics, Volume 56 (2003) no. 10, p. 1416 | DOI:10.1002/cpa.10099
- A fully nonlinear conformal flow on locally conformally flat manifolds, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2003 (2003) no. 557 | DOI:10.1515/crll.2003.033
Cité par 10 documents. Sources : Crossref
Commentaires - Politique