[Un principe du maximum pour opérateurs elliptiques du second ordre dans des domaines non bornés]
On considère le principe du maximum pour des opérateurs elliptiques du sécond ordre du type Lu=aij(x)uxixj+c(x)u dans des domaines non bornés de
We are concerned with the maximum principle for second-order elliptic operators of the kind Lu=aij(x)uxixj+c(x)u in unbounded domains of
Accepté le :
Publié le :
Vittorio Cafagna 1 ; Antonio Vitolo 1
@article{CRMATH_2002__334_5_359_0, author = {Vittorio Cafagna and Antonio Vitolo}, title = {On the maximum principle for second-order elliptic operators in unbounded domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {359--363}, publisher = {Elsevier}, volume = {334}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02267-7}, language = {en}, }
TY - JOUR AU - Vittorio Cafagna AU - Antonio Vitolo TI - On the maximum principle for second-order elliptic operators in unbounded domains JO - Comptes Rendus. Mathématique PY - 2002 SP - 359 EP - 363 VL - 334 IS - 5 PB - Elsevier DO - 10.1016/S1631-073X(02)02267-7 LA - en ID - CRMATH_2002__334_5_359_0 ER -
Vittorio Cafagna; Antonio Vitolo. On the maximum principle for second-order elliptic operators in unbounded domains. Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 359-363. doi : 10.1016/S1631-073X(02)02267-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02267-7/
[1] Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., Volume 50 (1997), pp. 1089-1111
[2] The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., Volume 47 (1994), pp. 47-92
[3] On the Alexandroff–Bakelman–Pucci estimate and the reverse Hölder inequality for solutions of elliptic and parabolic equations, Comm. Pure Appl. Math., Volume 48 (1995), pp. 539-570
[4] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983
[5] , Subharmonic Functions, 1, Academic Press, 1976
Cité par Sources :
Commentaires - Politique