[Inégalité d'Alexandroff–Bakelman–Pucci pour des équations elliptiques entièrement non linéaires singulières ou dégénérés]
Nous prouvons l'inégalité classique d'Alexandroff–Bakelman–Pucci pour des équations elliptiques entièrement non linéaires avec des opérateurs singulières ou dégénérés ayant comme modèles
We prove the classical Alexandroff–Bakelman–Pucci estimate for fully nonlinear elliptic equations involving singular or degenerate operators having as models
Accepté le :
Publié le :
Gonzalo Dávila 1 ; Patricio Felmer 1 ; Alexander Quaas 2
@article{CRMATH_2009__347_19-20_1165_0, author = {Gonzalo D\'avila and Patricio Felmer and Alexander Quaas}, title = {Alexandroff{\textendash}Bakelman{\textendash}Pucci estimate for singular or degenerate fully nonlinear elliptic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1165--1168}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.09.009}, language = {en}, }
TY - JOUR AU - Gonzalo Dávila AU - Patricio Felmer AU - Alexander Quaas TI - Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations JO - Comptes Rendus. Mathématique PY - 2009 SP - 1165 EP - 1168 VL - 347 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2009.09.009 LA - en ID - CRMATH_2009__347_19-20_1165_0 ER -
%0 Journal Article %A Gonzalo Dávila %A Patricio Felmer %A Alexander Quaas %T Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations %J Comptes Rendus. Mathématique %D 2009 %P 1165-1168 %V 347 %N 19-20 %I Elsevier %R 10.1016/j.crma.2009.09.009 %G en %F CRMATH_2009__347_19-20_1165_0
Gonzalo Dávila; Patricio Felmer; Alexander Quaas. Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1165-1168. doi : 10.1016/j.crma.2009.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.009/
[1] The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., Volume 47 (1994) no. 1, pp. 47-92
[2] On the method of moving planes and the sliding method, Boll. Soc. Brasil Mat. (N.S.), Volume 22 (1991), pp. 237-275
[3] Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci Toulouse Math. (6), Volume 13 (2004) no. 2, pp. 261-287
[4] Eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Partial Differ. Equ., Volume 11 (2006) no. 1, pp. 91-119
[5] Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators, Commun. Pure Appl. Anal., Volume 6 (2007), pp. 335-366
[6] The Dirichlet problem for singular fully nonlinear operators, Discrete Contin. Dyn. Syst. (special vol.) (2007), pp. 110-121
[7] Eigenvalue and Dirichlet problem for fully-nonlinear operators in non-smooth domains, J. Math. Anal. Appl., Volume 352 (2009) no. 2, pp. 822-835
[8] Fully Nonlinear Elliptic Equations, Colloquium Publications, vol. 43, American Mathematical Society, 1995
[9] On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., Volume 49 (1996) no. 4, pp. 365-398
[10] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., Volume 33 (1991), pp. 749-786
[11] G. Dávila, P. Felmer, A. Quaas, Harnack inequality for singular fully nonlinear operators and some existence results, preprint
[12] Motion of level sets by mean curvature, J. Differential Geom., Volume 33 (1991), pp. 635-681
[13] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983
[14] C. Imbert, Alexandroff–Bakelman–Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations, preprint
[15] T. Junges Miotto, The Aleksandrov–Bakelman–Pucci estimate for singular fully nonlinear operators, preprint
[16] On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators, Adv. Math., Volume 218 (2008) no. 1, pp. 105-135
- Schauder-type estimates for fully nonlinear degenerate elliptic equations, Journal of Functional Analysis, Volume 289 (2025) no. 1, p. 23 (Id/No 110900) | DOI:10.1016/j.jfa.2025.110900 | Zbl:8017503
- A fully nonlinear degenerate free transmission problem, Annals of PDE, Volume 10 (2024) no. 1, p. 30 (Id/No 5) | DOI:10.1007/s40818-024-00168-x | Zbl:1537.35126
-
-regularity for a class of degenerate/singular fully non-linear elliptic equations, Interfaces and Free Boundaries, Volume 26 (2024) no. 2, pp. 189-215 | DOI:10.4171/ifb/496 | Zbl:1542.35098 - Global regularity results for a class of singular/degenerate fully nonlinear elliptic equations, Mathematische Zeitschrift, Volume 306 (2024) no. 1, p. 26 (Id/No 1) | DOI:10.1007/s00209-023-03400-9 | Zbl:1532.35185
- Second derivative
-estimates for a class of singular fully nonlinear elliptic equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 249 (2024), p. 15 (Id/No 113630) | DOI:10.1016/j.na.2024.113630 | Zbl:1548.35096 -
regularity for some degenerate/singular fully nonlinear elliptic equations, Applied Mathematics Letters, Volume 146 (2023), p. 10 (Id/No 108830) | DOI:10.1016/j.aml.2023.108830 | Zbl:1522.35232 - Sharp boundary and global regularity for degenerate fully nonlinear elliptic equations, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 169 (2023), pp. 138-154 | DOI:10.1016/j.matpur.2022.11.010 | Zbl:1510.35086
- Fully nonlinear singularly perturbed models with non-homogeneous degeneracy, Revista Matemática Iberoamericana, Volume 39 (2023) no. 1, pp. 123-164 | DOI:10.4171/rmi/1319 | Zbl:1514.35014
- Fully nonlinear free transmission problems with nonhomogeneous degeneracies, Interfaces and Free Boundaries, Volume 24 (2022) no. 2, pp. 197-233 | DOI:10.4171/ifb/471 | Zbl:1490.35547
- Aleksandrov-Bakelman-Pucci maximum principle for
-viscosity solutions of equations with unbounded terms, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 168 (2022), pp. 192-212 | DOI:10.1016/j.matpur.2022.11.004 | Zbl:1509.35108 - Regularity of solutions to degenerate fully nonlinear elliptic equations with variable exponent, Bulletin of the London Mathematical Society, Volume 53 (2021) no. 6, pp. 1863-1878 | DOI:10.1112/blms.12550 | Zbl:1522.35129
- Sharp regularity for degenerate obstacle type problems: a geometric approach, Discrete and Continuous Dynamical Systems, Volume 41 (2021) no. 3, pp. 1359-1385 | DOI:10.3934/dcds.2020321 | Zbl:1461.35248
- Regularity for solutions of fully nonlinear elliptic equations with nonhomogeneous degeneracy, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, Volume 151 (2021) no. 1, pp. 110-132 | DOI:10.1017/prm.2020.5 | Zbl:1459.35154
-
regularity for singular or degenerate fully nonlinear equations and applications, NoDEA. Nonlinear Differential Equations and Applications, Volume 26 (2019) no. 5, p. 13 (Id/No 40) | DOI:10.1007/s00030-019-0586-2 | Zbl:1428.35132 - Maximum principles and Aleksandrov-Bakelman-Pucci type estimates for nonlocal Schrödinger equations with exterior conditions, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, pp. 1543-1581 | DOI:10.1137/18m1171722 | Zbl:1418.35051
- Harnack inequality for quasilinear elliptic equations on Riemannian manifolds, Journal of Differential Equations, Volume 264 (2018) no. 3, pp. 1613-1660 | DOI:10.1016/j.jde.2017.10.003 | Zbl:1380.35034
- Aleksandrov-Bakelman-Pucci maximum principles for a class of uniformly elliptic and parabolic integro-PDE, Journal of Differential Equations, Volume 264 (2018) no. 4, pp. 2708-2736 | DOI:10.1016/j.jde.2017.11.004 | Zbl:1386.35418
- Global
estimates for singular fully nonlinear elliptic equations with right hand side terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 172 (2018), pp. 216-232 | DOI:10.1016/j.na.2018.03.010 | Zbl:1390.35032 - Nonlinear elliptic equations with mixed singularities, Potential Analysis, Volume 48 (2018) no. 3, pp. 325-335 | DOI:10.1007/s11118-017-9637-7 | Zbl:1395.35064
- Singularly perturbed equations of degenerate type, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 34 (2017) no. 3, pp. 655-678 | DOI:10.1016/j.anihpc.2016.03.004 | Zbl:1362.35028
- Global
estimates for a type of singular fully nonlinear elliptic equations, Mathematische Zeitschrift, Volume 285 (2017) no. 3-4, pp. 1167-1179 | DOI:10.1007/s00209-016-1743-5 | Zbl:1361.35033 - Maximum principle for Pucci equations with sublinear growth in
and its applications, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 160 (2017), pp. 1-15 | DOI:10.1016/j.na.2017.03.018 | Zbl:1378.35052 - Estimates on elliptic equations that hold only where the gradient is large, Journal of the European Mathematical Society (JEMS), Volume 18 (2016) no. 6, pp. 1321-1338 | DOI:10.4171/jems/614 | Zbl:1344.35049
- Harnack inequality for degenerate and singular operators of
-Laplacian type on Riemannian manifolds, Mathematische Annalen, Volume 366 (2016) no. 3-4, pp. 1721-1785 | DOI:10.1007/s00208-016-1372-7 | Zbl:1355.35029 - Hölder estimates for viscosity solutions of equations of fractional
-Laplace type, NoDEA. Nonlinear Differential Equations and Applications, Volume 23 (2016) no. 5, p. 18 (Id/No 55) | DOI:10.1007/s00030-016-0406-x | Zbl:1380.35097 - Geometric gradient estimates for solutions to degenerate elliptic equations, Calculus of Variations and Partial Differential Equations, Volume 53 (2015) no. 3-4, pp. 605-625 | DOI:10.1007/s00526-014-0760-7 | Zbl:1326.35152
- C1,α regularity of solutions of some degenerate fully non-linear elliptic equations, Advances in Mathematics, Volume 233 (2013) no. 1, p. 196 | DOI:10.1016/j.aim.2012.07.033
- On the Aleksandrov-Bakelman-Pucci estimate for the infinity Laplacian, Calculus of Variations and Partial Differential Equations, Volume 48 (2013) no. 3-4, pp. 667-693 | DOI:10.1007/s00526-012-0567-3 | Zbl:1282.35163
- Eigenvalues for radially symmetric fully nonlinear singular or degenerate operators, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 75 (2012) no. 18, pp. 6524-6540 | DOI:10.1016/j.na.2012.07.029 | Zbl:1251.35060
- On the Aleksandrov-Bakel'man-Pucci estimate for some elliptic and parabolic nonlinear operators, Archive for Rational Mechanics and Analysis, Volume 202 (2011) no. 3, pp. 875-917 | DOI:10.1007/s00205-011-0434-y | Zbl:1257.35085
- Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations, Journal of Differential Equations, Volume 250 (2011) no. 3, pp. 1553-1574 | DOI:10.1016/j.jde.2010.07.005 | Zbl:1205.35124
- Harnack inequality for singular fully nonlinear operators and some existence results, Calculus of Variations and Partial Differential Equations, Volume 39 (2010) no. 3-4, pp. 557-578 | DOI:10.1007/s00526-010-0325-3 | Zbl:1204.35088
- Eigenfunctions for singular fully nonlinear equations in unbounded domains, NoDEA. Nonlinear Differential Equations and Applications, Volume 17 (2010) no. 6, pp. 697-714 | DOI:10.1007/s00030-010-0077-y | Zbl:1204.35087
Cité par 33 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier