Comptes Rendus
Partial Differential Equations
Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations
[Inégalité d'Alexandroff–Bakelman–Pucci pour des équations elliptiques entièrement non linéaires singulières ou dégénérés]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1165-1168.

Nous prouvons l'inégalité classique d'Alexandroff–Bakelman–Pucci pour des équations elliptiques entièrement non linéaires avec des opérateurs singulières ou dégénérés ayant comme modèles |p|αMλ,Λ±(X)Mλ,Λ± sont les opérateurs extremal de Pucci avec des paramètres 0<λΛ et α>1.

We prove the classical Alexandroff–Bakelman–Pucci estimate for fully nonlinear elliptic equations involving singular or degenerate operators having as models |p|αMλ,Λ±(X), where Mλ,Λ± are the Pucci extremal operators with parameters 0<λΛ and α>1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.09.009

Gonzalo Dávila 1 ; Patricio Felmer 1 ; Alexander Quaas 2

1 Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, UMR2071 CNRS-UChile, Universidad de Chile, Santiago, Chile
2 Departamento de Matemática, Universidad Técnica Federico Santa María, Av. Espana 1680, V-110 Valparaiso, Chile
@article{CRMATH_2009__347_19-20_1165_0,
     author = {Gonzalo D\'avila and Patricio Felmer and Alexander Quaas},
     title = {Alexandroff{\textendash}Bakelman{\textendash}Pucci estimate for singular or degenerate fully nonlinear elliptic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1165--1168},
     publisher = {Elsevier},
     volume = {347},
     number = {19-20},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.009},
     language = {en},
}
TY  - JOUR
AU  - Gonzalo Dávila
AU  - Patricio Felmer
AU  - Alexander Quaas
TI  - Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1165
EP  - 1168
VL  - 347
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2009.09.009
LA  - en
ID  - CRMATH_2009__347_19-20_1165_0
ER  - 
%0 Journal Article
%A Gonzalo Dávila
%A Patricio Felmer
%A Alexander Quaas
%T Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations
%J Comptes Rendus. Mathématique
%D 2009
%P 1165-1168
%V 347
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2009.09.009
%G en
%F CRMATH_2009__347_19-20_1165_0
Gonzalo Dávila; Patricio Felmer; Alexander Quaas. Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1165-1168. doi : 10.1016/j.crma.2009.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.009/

[1] H. Berestycki; L. Nirenberg; S.R.S. Varadhan The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., Volume 47 (1994) no. 1, pp. 47-92

[2] H. Berestycki; L. Nirenberg On the method of moving planes and the sliding method, Boll. Soc. Brasil Mat. (N.S.), Volume 22 (1991), pp. 237-275

[3] I. Birindelli; F. Demengel Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci Toulouse Math. (6), Volume 13 (2004) no. 2, pp. 261-287

[4] I. Birindelli; F. Demengel Eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Partial Differ. Equ., Volume 11 (2006) no. 1, pp. 91-119

[5] I. Birindelli; F. Demengel Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators, Commun. Pure Appl. Anal., Volume 6 (2007), pp. 335-366

[6] I. Birindelli; F. Demengel The Dirichlet problem for singular fully nonlinear operators, Discrete Contin. Dyn. Syst. (special vol.) (2007), pp. 110-121

[7] I. Birindelli; F. Demengel Eigenvalue and Dirichlet problem for fully-nonlinear operators in non-smooth domains, J. Math. Anal. Appl., Volume 352 (2009) no. 2, pp. 822-835

[8] L. Caffarelli; X. Cabré Fully Nonlinear Elliptic Equations, Colloquium Publications, vol. 43, American Mathematical Society, 1995

[9] L. Caffarelli; M. Crandall; M. Kocan; A. Świech On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., Volume 49 (1996) no. 4, pp. 365-398

[10] Y.G. Chen; Y. Giga; S. Goto Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., Volume 33 (1991), pp. 749-786

[11] G. Dávila, P. Felmer, A. Quaas, Harnack inequality for singular fully nonlinear operators and some existence results, preprint

[12] C. Evans; J. Spruck Motion of level sets by mean curvature, J. Differential Geom., Volume 33 (1991), pp. 635-681

[13] D. Gilbarg; N.S. Trudinger Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983

[14] C. Imbert, Alexandroff–Bakelman–Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations, preprint

[15] T. Junges Miotto, The Aleksandrov–Bakelman–Pucci estimate for singular fully nonlinear operators, preprint

[16] A. Quaas; B. Sirakov On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators, Adv. Math., Volume 218 (2008) no. 1, pp. 105-135

  • Thialita M. Nascimento Schauder-type estimates for fully nonlinear degenerate elliptic equations, Journal of Functional Analysis, Volume 289 (2025) no. 1, p. 23 (Id/No 110900) | DOI:10.1016/j.jfa.2025.110900 | Zbl:8017503
  • Gerardo Huaroto; Edgard A. Pimentel; Giane C. Rampasso; Andrzej Święch A fully nonlinear degenerate free transmission problem, Annals of PDE, Volume 10 (2024) no. 1, p. 30 (Id/No 5) | DOI:10.1007/s40818-024-00168-x | Zbl:1537.35126
  • Sumiya Baasandorj; Sun-Sig Byun; Ki-Ahm Lee; Se-Chan Lee C1,α-regularity for a class of degenerate/singular fully non-linear elliptic equations, Interfaces and Free Boundaries, Volume 26 (2024) no. 2, pp. 189-215 | DOI:10.4171/ifb/496 | Zbl:1542.35098
  • Sumiya Baasandorj; Sun-Sig Byun; Ki-Ahm Lee; Se-Chan Lee Global regularity results for a class of singular/degenerate fully nonlinear elliptic equations, Mathematische Zeitschrift, Volume 306 (2024) no. 1, p. 26 (Id/No 1) | DOI:10.1007/s00209-023-03400-9 | Zbl:1532.35185
  • Sumiya Baasandorj; Sun-Sig Byun; Jehan Oh Second derivative Lδ-estimates for a class of singular fully nonlinear elliptic equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 249 (2024), p. 15 (Id/No 113630) | DOI:10.1016/j.na.2024.113630 | Zbl:1548.35096
  • Sumiya Baasandorj; Sun-Sig Byun; Jehan Oh C1 regularity for some degenerate/singular fully nonlinear elliptic equations, Applied Mathematics Letters, Volume 146 (2023), p. 10 (Id/No 108830) | DOI:10.1016/j.aml.2023.108830 | Zbl:1522.35232
  • Damião J. Araújo; Boyan Sirakov Sharp boundary and global regularity for degenerate fully nonlinear elliptic equations, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 169 (2023), pp. 138-154 | DOI:10.1016/j.matpur.2022.11.010 | Zbl:1510.35086
  • Elzon C. Bezerra Júnior; João Vítor da Silva; Gleydson C. Ricarte Fully nonlinear singularly perturbed models with non-homogeneous degeneracy, Revista Matemática Iberoamericana, Volume 39 (2023) no. 1, pp. 123-164 | DOI:10.4171/rmi/1319 | Zbl:1514.35014
  • Cristiana De Filippis Fully nonlinear free transmission problems with nonhomogeneous degeneracies, Interfaces and Free Boundaries, Volume 24 (2022) no. 2, pp. 197-233 | DOI:10.4171/ifb/471 | Zbl:1490.35547
  • Shigeaki Koike; Andrzej Święch Aleksandrov-Bakelman-Pucci maximum principle for Lp-viscosity solutions of equations with unbounded terms, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 168 (2022), pp. 192-212 | DOI:10.1016/j.matpur.2022.11.004 | Zbl:1509.35108
  • Yuzhou Fang; Vicenţiu D. Rădulescu; Chao Zhang Regularity of solutions to degenerate fully nonlinear elliptic equations with variable exponent, Bulletin of the London Mathematical Society, Volume 53 (2021) no. 6, pp. 1863-1878 | DOI:10.1112/blms.12550 | Zbl:1522.35129
  • João Vitor da Silva; Hernán Vivas Sharp regularity for degenerate obstacle type problems: a geometric approach, Discrete and Continuous Dynamical Systems, Volume 41 (2021) no. 3, pp. 1359-1385 | DOI:10.3934/dcds.2020321 | Zbl:1461.35248
  • Cristiana De Filippis Regularity for solutions of fully nonlinear elliptic equations with nonhomogeneous degeneracy, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, Volume 151 (2021) no. 1, pp. 110-132 | DOI:10.1017/prm.2020.5 | Zbl:1459.35154
  • Isabeau Birindelli; Françoise Demengel; Fabiana Leoni C1,γ regularity for singular or degenerate fully nonlinear equations and applications, NoDEA. Nonlinear Differential Equations and Applications, Volume 26 (2019) no. 5, p. 13 (Id/No 40) | DOI:10.1007/s00030-019-0586-2 | Zbl:1428.35132
  • Anup Biswas; József Lörinczi Maximum principles and Aleksandrov-Bakelman-Pucci type estimates for nonlocal Schrödinger equations with exterior conditions, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, pp. 1543-1581 | DOI:10.1137/18m1171722 | Zbl:1418.35051
  • Soojung Kim Harnack inequality for quasilinear elliptic equations on Riemannian manifolds, Journal of Differential Equations, Volume 264 (2018) no. 3, pp. 1613-1660 | DOI:10.1016/j.jde.2017.10.003 | Zbl:1380.35034
  • Chenchen Mou; Andrzej Święch Aleksandrov-Bakelman-Pucci maximum principles for a class of uniformly elliptic and parabolic integro-PDE, Journal of Differential Equations, Volume 264 (2018) no. 4, pp. 2708-2736 | DOI:10.1016/j.jde.2017.11.004 | Zbl:1386.35418
  • Dongsheng Li; Zhisu Li Global W2,δ estimates for singular fully nonlinear elliptic equations with Ln right hand side terms, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 172 (2018), pp. 216-232 | DOI:10.1016/j.na.2018.03.010 | Zbl:1390.35032
  • Eduardo V. Teixeira Nonlinear elliptic equations with mixed singularities, Potential Analysis, Volume 48 (2018) no. 3, pp. 325-335 | DOI:10.1007/s11118-017-9637-7 | Zbl:1395.35064
  • Damião J. Araújo; Gleydson C. Ricarte; Eduardo V. Teixeira Singularly perturbed equations of degenerate type, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 34 (2017) no. 3, pp. 655-678 | DOI:10.1016/j.anihpc.2016.03.004 | Zbl:1362.35028
  • Dongsheng Li; Zhisu Li Global W2,δ estimates for a type of singular fully nonlinear elliptic equations, Mathematische Zeitschrift, Volume 285 (2017) no. 3-4, pp. 1167-1179 | DOI:10.1007/s00209-016-1743-5 | Zbl:1361.35033
  • Shigeaki Koike; Takahiro Kosugi Maximum principle for Pucci equations with sublinear growth in Du and its applications, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 160 (2017), pp. 1-15 | DOI:10.1016/j.na.2017.03.018 | Zbl:1378.35052
  • Cyril Imbert; Luis Silvestre Estimates on elliptic equations that hold only where the gradient is large, Journal of the European Mathematical Society (JEMS), Volume 18 (2016) no. 6, pp. 1321-1338 | DOI:10.4171/jems/614 | Zbl:1344.35049
  • Soojung Kim Harnack inequality for degenerate and singular operators of p-Laplacian type on Riemannian manifolds, Mathematische Annalen, Volume 366 (2016) no. 3-4, pp. 1721-1785 | DOI:10.1007/s00208-016-1372-7 | Zbl:1355.35029
  • Erik Lindgren Hölder estimates for viscosity solutions of equations of fractional p-Laplace type, NoDEA. Nonlinear Differential Equations and Applications, Volume 23 (2016) no. 5, p. 18 (Id/No 55) | DOI:10.1007/s00030-016-0406-x | Zbl:1380.35097
  • Damião J. Araújo; Gleydson Ricarte; Eduardo V. Teixeira Geometric gradient estimates for solutions to degenerate elliptic equations, Calculus of Variations and Partial Differential Equations, Volume 53 (2015) no. 3-4, pp. 605-625 | DOI:10.1007/s00526-014-0760-7 | Zbl:1326.35152
  • C. Imbert; L. Silvestre C1,α regularity of solutions of some degenerate fully non-linear elliptic equations, Advances in Mathematics, Volume 233 (2013) no. 1, p. 196 | DOI:10.1016/j.aim.2012.07.033
  • Fernando Charro; Guido De Philippis; Agnese Di Castro; Davi Máximo On the Aleksandrov-Bakelman-Pucci estimate for the infinity Laplacian, Calculus of Variations and Partial Differential Equations, Volume 48 (2013) no. 3-4, pp. 667-693 | DOI:10.1007/s00526-012-0567-3 | Zbl:1282.35163
  • Patricio Felmer; Darío Valdebenito Eigenvalues for radially symmetric fully nonlinear singular or degenerate operators, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 75 (2012) no. 18, pp. 6524-6540 | DOI:10.1016/j.na.2012.07.029 | Zbl:1251.35060
  • Roberto Argiolas; Fernando Charro; Ireneo Peral On the Aleksandrov-Bakel'man-Pucci estimate for some elliptic and parabolic nonlinear operators, Archive for Rational Mechanics and Analysis, Volume 202 (2011) no. 3, pp. 875-917 | DOI:10.1007/s00205-011-0434-y | Zbl:1257.35085
  • Cyril Imbert Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations, Journal of Differential Equations, Volume 250 (2011) no. 3, pp. 1553-1574 | DOI:10.1016/j.jde.2010.07.005 | Zbl:1205.35124
  • Gonzalo Dávila; Patricio Felmer; Alexander Quaas Harnack inequality for singular fully nonlinear operators and some existence results, Calculus of Variations and Partial Differential Equations, Volume 39 (2010) no. 3-4, pp. 557-578 | DOI:10.1007/s00526-010-0325-3 | Zbl:1204.35088
  • I. Birindelli; F. Demengel Eigenfunctions for singular fully nonlinear equations in unbounded domains, NoDEA. Nonlinear Differential Equations and Applications, Volume 17 (2010) no. 6, pp. 697-714 | DOI:10.1007/s00030-010-0077-y | Zbl:1204.35087

Cité par 33 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: