Comptes Rendus
A Schwarz-type formula for minimal surfaces in Euclidean space n
[Une formule de type Schwarz pour les surfaces minimales de l'espace euclidien n]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 389-394.

Cet article présente une représentation complexe des surfaces minimales de n, basée sur la formule de Schwarz qui résout le problème classique de Björling pour les surfaces minimales de 3. Comme application, nous montrons qu'un plan de dimension k de n est un plan de symetrie d'une surface minimale de n s'il lui est orthogonal. Nous décrivons aussi un procédé de construction de surfaces minimales ayant des propriétés géométriques prédéterminées, à partir de courbes analytiques réelles.

This paper introduces a complex representation for minimal surfaces in n, based on the Schwarz formula which solves the classical Björling problem for minimal surfaces in 3. As an application, it is shown that a k-dimensional plane of n is a plane of symmetry of a minimal surface in n provided it intersects the surface orthogonally. A procedure for the construction of minimal surfaces is also described. This procedure introduces minimal surfaces with prescribed geometric properties, starting from real analytic curves in n.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02280-X

Luis J. Alı́as 1 ; Pablo Mira 2

1 Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
2 Departamento de Matemática Aplicada y Estadı́stica, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
@article{CRMATH_2002__334_5_389_0,
     author = {Luis J. Al{\i}́as and Pablo Mira},
     title = {A {Schwarz-type} formula for minimal surfaces in {Euclidean} space $ \mathbb{R}^{n}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {389--394},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02280-X},
     language = {en},
}
TY  - JOUR
AU  - Luis J. Alı́as
AU  - Pablo Mira
TI  - A Schwarz-type formula for minimal surfaces in Euclidean space $ \mathbb{R}^{n}$
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 389
EP  - 394
VL  - 334
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02280-X
LA  - en
ID  - CRMATH_2002__334_5_389_0
ER  - 
%0 Journal Article
%A Luis J. Alı́as
%A Pablo Mira
%T A Schwarz-type formula for minimal surfaces in Euclidean space $ \mathbb{R}^{n}$
%J Comptes Rendus. Mathématique
%D 2002
%P 389-394
%V 334
%N 5
%I Elsevier
%R 10.1016/S1631-073X(02)02280-X
%G en
%F CRMATH_2002__334_5_389_0
Luis J. Alı́as; Pablo Mira. A Schwarz-type formula for minimal surfaces in Euclidean space $ \mathbb{R}^{n}$. Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 389-394. doi : 10.1016/S1631-073X(02)02280-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02280-X/

[1] L.J. Alı́as, P. Mira, The Björling problem for minimal surfaces in n and its applications (in preparation)

[2] S. Alves, R.M.B. Chaves, P. Simoes, Björling's problem for minimal surfaces in 4 (in preparation)

[3] E.G. Björling In integrationem aequationis derivatarum partialum superfici, cujus in puncto unoquoque principales ambo radii curvedinis aequales sunt sngoque contrario, Arch. Math. Phys., Volume 4 (1844) no. 1, pp. 290-315

[4] S.S. Chern; R. Osserman Complete minimal surfaces in Euclidean n-space, J. Analyse Math., Volume 19 (1967), pp. 15-34

[5] U. Dierkes; S. Hildebrant; A. Küster; O. Wohlrab Minimal Surfaces I, Comprehensive Studies in Math., 295, Springer-Verlag, 1992

[6] D. Hoffman; R. Osserman The geometry of the generalized Gauss map, Mem. Amer. Math. Soc., Volume 28 (1980)

[7] D.S.P. Leung The reflection principle for minimal submanifolds of Riemannian symmetric spaces, J. Differential Geom., Volume 8 (1973), pp. 153-160

[8] J.C.C. Nitsche, Lectures on Minimal Surfaces, I, Cambridge University Press, Cambridge, 1989

[9] R. Osserman A Survey of Minimal Surfaces, Dover Publications, New York, 1986

[10] R. Osserman Global properties of minimal surfaces in E3 and En, Ann. Math., Volume 80 (1964), pp. 340-364

[11] H.A. Schwarz Gesammelte Mathematische Abhandlungen, Springer-Verlag, Berlin, 1890

Cité par Sources :

Commentaires - Politique