[Validation croisée pour l'estimateur à noyau de la déconvolution d'une densité]
En présence d'un échantillon i.i.d. d'une variable aléatoire corrumpue Y=X+ε, avec X et ε indépendants. Nous proposons une méthode basée sur la validation-croisée, pour choisir la largeur de la fenêtre de l'estimateur à noyau de la densité de X. L'optimalité asymptotique de la méthode proposée est établie.
Assume we have i.i.d. replications from the corrupted random variable Y=X+ε, where X and ε are independent. We propose a data-driven bandwidth based on cross-validation ideas, for the kernel deconvolution estimator of the density of X. The proposed method is shown to be asymptotically optimal.
Accepté le :
Publié le :
Élie Youndjé 1 ; Martin T. Wells 2
@article{CRMATH_2002__334_6_509_0, author = {\'Elie Youndj\'e and Martin T. Wells}, title = {Least squares cross-validation for the kernel deconvolution density estimator}, journal = {Comptes Rendus. Math\'ematique}, pages = {509--513}, publisher = {Elsevier}, volume = {334}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02291-4}, language = {en}, }
TY - JOUR AU - Élie Youndjé AU - Martin T. Wells TI - Least squares cross-validation for the kernel deconvolution density estimator JO - Comptes Rendus. Mathématique PY - 2002 SP - 509 EP - 513 VL - 334 IS - 6 PB - Elsevier DO - 10.1016/S1631-073X(02)02291-4 LA - en ID - CRMATH_2002__334_6_509_0 ER -
Élie Youndjé; Martin T. Wells. Least squares cross-validation for the kernel deconvolution density estimator. Comptes Rendus. Mathématique, Volume 334 (2002) no. 6, pp. 509-513. doi : 10.1016/S1631-073X(02)02291-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02291-4/
[1] An alternative method of cross-validation for the smoothing of density estimates, Biometrika, Volume 72 (1984), pp. 353-360
[2] On the optimal rates of convergence for nonparametric deconvolution problems, Ann. Statist., Volume 19 (1991), pp. 1257-1272
[3] Asymptotic normality for deconvolution kernel density estimators, Sankhya Ser. A, Volume 53 (1991), pp. 97-110
[4] Large sample optimality of least squares cross-validation in density estimation, Ann. Statist., Volume 11 (1983), pp. 1156-1174
[5] Optimal bandwith selection in nonparametric regression estimation, Ann. Statist., Volume 13 (1985), pp. 1465-1481
[6] Data-driven deconvolution, Nonparametric Statist., Volume 10 (1999), pp. 343-373
[7] A comparison of cross-validation techniques in density estimation, Ann. Statist., Volume 15 (1987), pp. 152-162
[8] Multivariate probability density deconvolution for stationary random processes, IEEE Trans. Inform. Theory, Volume IT-37 (1991), pp. 1105-1115
[9] Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes, J. Multivariate Anal., Volume 44 (1993), pp. 47-68
[10] Strong consistency and rates for deconvolution of multivariate densities of stationary processes, Stochastic Process. Appl., Volume 47 (1993), pp. 53-74
[11] Empirical choice of histograms and kernel density estimators, Scand. J. Statist., Volume 9 (1982), pp. 65-78
[12] Deconvoluting kernel density estimators, Statistics, Volume 21 (1990), pp. 169-184
[13] E. Youndjé, M. Wells, Asymptotic equivalence of quadratic measure of errors for kernel deconvolution density, Technical report, Cornell Department of Statistical Sciences, 2000
Cité par Sources :
Commentaires - Politique