[Sur les propagateurs de Feynman–Kac pour l'équation de la chaleur avec un potentiel qui est une mesure dépendant du temps]
On étudie les propagateurs de Feynman–Kac, correspondant à l'équation de la chaleur dans le sens direct et inverse avec un potentiel qui est une mesure dépendant du temps. Nous considérons diverses généralisations de la classe de Kato de potentiels. Sous des conditions appropriées sur le potentiel nous obtenons les théorèmes de résolubilité et d'unicité pour l'équation de la chaleur avec un potentiel, et nous étudions les propriétés des transformations définies par les propagateurs.
The Feynman–Kac propagators, corresponding to the forward and backward heat equations with a time-dependent measure as a potential are studied. Various generalizations of the Kato class of potentials are considered. Under appropriate conditions on the potential, the solvability and uniqueness theorems for the heat equation with a potential are obtained, and the mapping properties of the Feynman–Kac propagators are discussed.
Accepté le :
Publié le :
Archil Gulisashvili 1
@article{CRMATH_2002__334_6_445_0, author = {Archil Gulisashvili}, title = {Classes of time-dependent measures and the behavior of {Feynman{\textendash}Kac} propagators}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--449}, publisher = {Elsevier}, volume = {334}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02294-X}, language = {en}, }
Archil Gulisashvili. Classes of time-dependent measures and the behavior of Feynman–Kac propagators. Comptes Rendus. Mathématique, Volume 334 (2002) no. 6, pp. 445-449. doi : 10.1016/S1631-073X(02)02294-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02294-X/
[1] Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure Appl. Math., Volume 35 (1982), pp. 209-271
[2] Semigroups of Schrödinger operators with potentials given by Radon measures (S. Albeverio et al., eds.), Stochastic Processes – Physics and Geometry, World Scientific, Singapore, 1989
[3] Sharp estimates in smoothing theorems for Schrödinger semigroups, J. Funct. Anal., Volume 170 (2000), pp. 161-187
[4] A. Gulisashvili, On the heat equation with a time-dependent singular potential (to appear)
[5] Exact smoothing properties of Schrödinger semigroups, Amer. J. Math., Volume 118 (1996), pp. 1215-1248
[6] Estimates for fundamental solutions of second-order parabolic equations, J. London Math. Soc., Volume 62 (2000), pp. 521-543
[7] On a parabolic equation with a singular lower order term, Trans. Amer. Math. Soc., Volume 348 (1996), pp. 2811-2844
[8] On a parabolic equation with a singular lower order term, Part 2: The Gaussian bounds, Indiana Univ. Math. J., Volume 46 (1997), pp. 989-1020
[9] Non-autonomous Miyadera perturbation, Differential Integral Equations, Volume 13 (2000), pp. 341-368
[10] The non-autonomous Kato class, Arch. Math., Volume 72 (1999), pp. 454-460
[11] Schrödinger semigroups, Bull. Amer. Math. Soc., Volume 7 (1982), pp. 445-526
[12] Absorption semigroups, their generators, and Schrödinger semigroups, J. Functional Anal., Volume 67 (1986), pp. 167-205
[13] Generalized Feynman–Kac semigroups, associated quadratic forms and asymptotic properties, Potential Anal., Volume 14 (2001), pp. 387-408
Cité par Sources :
Commentaires - Politique