Comptes Rendus
Velocity averaging in L1 for the transport equation
[Moyennisation en vitesse dans L1 pour l'équation de transport]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 557-562.

A new result of L1-compactness for velocity averages of solutions to the transport equation is stated and proved in this Note. This result, proved by a new interpolation argument, extends to the case of any space dimension Lemma 8 of Golse–Lions–Perthame–Sentis [J. Funct. Anal. 76 (1988) 110–125], proved there in space dimension 1 only. This is a key argument in the proof of the hydrodynamic limits of the Boltzmann or BGK equations to the incompressible Euler or Navier–Stokes equations.

On énonce et démontre dans cette Note un nouveau résultat de compacité dans L1 pour les moyennes en vitesse des solutions de l'équation de transport. Ce résultat, établi par un nouvel argument d'interpolation, généralise à toute dimension d'espace le Lemme 8 de Golse–Lions–Perthame–Sentis [J. Funct. Anal. 76 (1988) 110–125], qui n'était jusqu'ici connu qu'en dimension 1 d'espace. C'est un point crucial dans les preuves des limites hydrodynamiques des équations de Boltzmann ou de BGK vers les équations de Navier–Stokes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02302-6

François Golse 1, 2 ; Laure Saint-Raymond 2

1 Institut Universitaire de France & École normale supérieure, DMA, 45, rue d'Ulm, 75005 Paris, France
2 Université Paris 6, Laboratoire d'analyse numérique, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2002__334_7_557_0,
     author = {Fran\c{c}ois Golse and Laure Saint-Raymond},
     title = {Velocity averaging in $ \mathrm{L}^{\mathrm{1}}$ for the transport equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {557--562},
     publisher = {Elsevier},
     volume = {334},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02302-6},
     language = {en},
}
TY  - JOUR
AU  - François Golse
AU  - Laure Saint-Raymond
TI  - Velocity averaging in $ \mathrm{L}^{\mathrm{1}}$ for the transport equation
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 557
EP  - 562
VL  - 334
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02302-6
LA  - en
ID  - CRMATH_2002__334_7_557_0
ER  - 
%0 Journal Article
%A François Golse
%A Laure Saint-Raymond
%T Velocity averaging in $ \mathrm{L}^{\mathrm{1}}$ for the transport equation
%J Comptes Rendus. Mathématique
%D 2002
%P 557-562
%V 334
%N 7
%I Elsevier
%R 10.1016/S1631-073X(02)02302-6
%G en
%F CRMATH_2002__334_7_557_0
François Golse; Laure Saint-Raymond. Velocity averaging in $ \mathrm{L}^{\mathrm{1}}$ for the transport equation. Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 557-562. doi : 10.1016/S1631-073X(02)02302-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02302-6/

[1] V.I. Agoshkov Spaces of functions with differential-difference characteristics and smoothness of solutions of the transport equation, Soviet Math. Dokl., Volume 29 (1984), pp. 662-666

[2] C. Bardos; P. Degond Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985), pp. 101-118

[3] F. Bouchut; F. Golse; M. Pulvirenti Kinetic equations and asymptotic theory (B. Perthame; L. Desvillettes, eds.), Series in Appl. Math., 4, Gauthier-Villars, Paris, 2000

[4] F. Castella; B. Perthame Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris, Série I, Volume 322 (1996), pp. 535-540

[5] R. DeVore; G. Petrova The averaging lemma, J. Amer. Math. Soc., Volume 14 (2001), pp. 279-296

[6] R. DiPerna; P.-L. Lions; Y. Meyer Lp regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991), pp. 271-288

[7] F. Golse; P.-L. Lions; B. Perthame; R. Sentis Regularity of the moments of the solution of a transport equation, J. Funct. Anal., Volume 76 (1988), pp. 110-125

[8] F. Golse; B. Perthame; R. Sentis Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale de l'opérateur de transport, C. R. Acad. Sci. Paris, Série I, Volume 301 (1985), pp. 341-344

[9] F. Golse, L. Saint-Raymond, The Navier–Stokes limit for the Boltzmann equation: convergence proof, Preprint. C. R. Acad. Sci. Paris, Série I 333 (2001), to appear

[10] F. Golse, L. Saint-Raymond, in preparation

[11] J.-L. Lions Théorèmes de trace et d'interpolation I, II, Ann. Scuola Norm. Pisa, Volume 13 (1959), pp. 389-403 14 (1960) 317–331

[12] P.-L. Lions Régularité optimale des moyennes en vitesse, C. R. Acad. Sci. Paris, Série I, Volume 320 (1995), pp. 911-915 and C. R. Acad. Sci. Paris, Série I 326 (1998) 945–948

[13] P.-A. Meyer Probabilités et potentiel, Hermann, Paris, 1966

[14] L. Saint-Raymond, Thèse de doctorat en mathématiques, Université Paris VII–Denis Diderot, January 2000

[15] L. Saint-Raymond, From the Boltzmann BGK equation to the Navier–Stokes system, Ann. Sci. École Norm. Sup., in press

  • Baoyan Sun; Man Wu The velocity averaging lemma to the relativistic free transport equation, AIMS Mathematics, Volume 10 (2025) no. 4, p. 9369 | DOI:10.3934/math.2025433
  • Yuzhe Zhu Averaging lemmas and hypoellipticity, Kinetic and Related Models, Volume 18 (2025) no. 5, pp. 800-823 | DOI:10.3934/krm.2025006 | Zbl:8038660
  • Leif Arkeryd; Anne Nouri Stationary solutions to the Boltzmann equation in the plane, Quarterly of Applied Mathematics, Volume 83 (2025) no. 1, pp. 189-209 | DOI:10.1090/qam/1692 | Zbl:7950651
  • Ming-Jiea Lyu; Baoyan Sun A remark on the velocity averaging lemma of the transport equation with general case, Networks and Heterogeneous Media, Volume 19 (2024) no. 1, pp. 157-168 | DOI:10.3934/nhm.2024007 | Zbl:1545.35145
  • Guillaume Bal; Alexandre Jollivet Boundary control for transport equations, Mathematical Control and Related Fields, Volume 13 (2023) no. 2, pp. 721-770 | DOI:10.3934/mcrf.2022014 | Zbl:1518.35566
  • Marc Briant Hypocoercivity for perturbation theory and perturbation of hypocoercivity for confined Boltzmann-type collisional equations, SeMA Journal, Volume 80 (2023) no. 1, pp. 27-83 | DOI:10.1007/s40324-021-00281-y | Zbl:1537.35269
  • Pierre-Emmanuel Jabin; Hsin-Yi Lin; Eitan Tadmor Commutator method for averaging lemmas, Analysis PDE, Volume 15 (2022) no. 6, pp. 1561-1584 | DOI:10.2140/apde.2022.15.1561 | Zbl:1501.35109
  • Megan Griffin-Pickering; Alpár R. Mészáros A variational approach to first order kinetic mean field games with local couplings, Communications in Partial Differential Equations, Volume 47 (2022) no. 10, pp. 1945-2022 | DOI:10.1080/03605302.2022.2101003 | Zbl:1498.49070
  • Stephanie Lohrengel; Mahdi Mahmoudzadeh; Farah Oumri; Stéphanie Salmon; Fabrice Wallois A homogenized cerebrospinal fluid model for diffuse optical tomography in the neonatal head, International Journal for Numerical Methods in Biomedical Engineering, Volume 38 (2022) no. 1 | DOI:10.1002/cnm.3538
  • Pierre-Emmanuel Jabin; Hsin-Yi Lin; Eitan Tadmor A new commutator method for averaging lemmas, Séminaire Laurent Schwartz. EDP et Applications, Volume 2019-2020 (2020), p. ex | DOI:10.5802/slsedp.142 | Zbl:1491.35384
  • Diogo Arsénio; Nicolas Lerner An energy method for averaging lemmas, Pure and Applied Analysis, Volume 3 (2021) no. 2, pp. 319-362 | DOI:10.2140/paa.2021.3.319 | Zbl:1478.35062
  • Juan Calvo; Pierre-Emmanuel Jabin; Juan Soler Global weak solutions to the relativistic BGK equation, Communications in Partial Differential Equations, Volume 45 (2020) no. 3, pp. 191-229 | DOI:10.1080/03605302.2019.1669642 | Zbl:1437.35659
  • M. Graf; M. Kunzinger; D. Mitrovic; D. Vujadinovic A vanishing dynamic capillarity limit equation with discontinuous flux, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 6, p. 22 (Id/No 201) | DOI:10.1007/s00033-020-01432-3 | Zbl:1456.35012
  • Daniel Han-Kwan On propagation of higher space regularity for nonlinear Vlasov equations, Analysis PDE, Volume 12 (2019) no. 1, pp. 189-244 | DOI:10.2140/apde.2019.12.189 | Zbl:1398.35243
  • Ning Jiang; Xu Zhang Global renormalized solutions and Navier-Stokes limit of the Boltzmann equation with incoming boundary condition for long range interaction, Journal of Differential Equations, Volume 266 (2019) no. 5, pp. 2597-2637 | DOI:10.1016/j.jde.2018.08.040 | Zbl:1477.35113
  • Lanoir Addala; Mohamed Lazhar Tayeb Diffusion limit of a Boltzmann-Poisson system with nonlinear equilibrium state, Journal of Hyperbolic Differential Equations, Volume 16 (2019) no. 1, pp. 131-156 | DOI:10.1142/s021989161950005x | Zbl:1428.35263
  • Ning Jiang; Xu Zhang The Boltzmann equation with incoming boundary condition: global solutions and Navier-Stokes limit, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, pp. 2504-2534 | DOI:10.1137/17m114697x | Zbl:1419.76566
  • Samuel Punshon-Smith; Scott Smith On the Boltzmann equation with stochastic kinetic transport: global existence of renormalized martingale solutions, Archive for Rational Mechanics and Analysis, Volume 229 (2018) no. 2, pp. 627-708 | DOI:10.1007/s00205-018-1225-5 | Zbl:1394.35313
  • Nathalie Ayi; Thierry Goudon Regularity of velocity averages for transport equations on random discrete velocity grids, Analysis PDE, Volume 10 (2017) no. 5, pp. 1201-1225 | DOI:10.2140/apde.2017.10.1201 | Zbl:1370.35069
  • Ning Jiang; Nader Masmoudi Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in bounded domain I, Communications on Pure and Applied Mathematics, Volume 70 (2017) no. 1, pp. 90-171 | DOI:10.1002/cpa.21631 | Zbl:1362.35233
  • Ennio Fedrizzi; Franco Flandoli; Enrico Priola; Julien Vovelle Regularity of stochastic kinetic equations, Electronic Journal of Probability, Volume 22 (2017) no. none | DOI:10.1214/17-ejp65
  • Nathalie Ayi Stochastic discrete velocity averaging lemmas and Rosseland approximation, Séminaire Laurent Schwartz. EDP et Applications, Volume 2016-2017 (2017), p. ex | DOI:10.5802/slsedp.100 | Zbl:1475.35119
  • Ning Jiang; Nader Masmoudi Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in a bounded domain, Séminaire Laurent Schwartz. EDP et Applications, Volume 2015-2016 (2016), p. ex | DOI:10.5802/slsedp.95 | Zbl:1360.35181
  • Laure Saint-Raymond A mathematical PDE perspective on the Chapman-Enskog expansion, Bulletin of the American Mathematical Society. New Series, Volume 51 (2014) no. 2, pp. 247-275 | DOI:10.1090/s0273-0979-2013-01440-x | Zbl:1295.35353
  • François Golse Fluid Dynamic Limits of the Kinetic Theory of Gases, From Particle Systems to Partial Differential Equations, Volume 75 (2014), p. 3 | DOI:10.1007/978-3-642-54271-8_1
  • Diogo Arsénio; Nader Masmoudi A new approach to velocity averaging lemmas in Besov spaces, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 101 (2014) no. 4, pp. 495-551 | DOI:10.1016/j.matpur.2013.06.012 | Zbl:1293.35192
  • Mustapha Mokhtar-Kharroubi On L1 exponential trend to equilibrium for conservative linear kinetic equations on the torus, Journal of Functional Analysis, Volume 266 (2014) no. 11, pp. 6418-6455 | DOI:10.1016/j.jfa.2014.03.019 | Zbl:1304.47055
  • Laure Saint-Raymond Deriving Ohm's law from the Vlasov-Maxwell-Boltzmann system, Trends in contemporary mathematics. Selected talks based on the presentations at the INdAM day, June 18, 2014, Cham: Springer, 2014, pp. 249-262 | DOI:10.1007/978-3-319-05254-0_18 | Zbl:1326.35392
  • Laure Saint-Raymond Entropy inequality and hydrodynamic limits for the Boltzmann equation, Philosophical Transactions of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, Volume 371 (2013) no. 2005, p. 20120350 | DOI:10.1098/rsta.2012.0350 | Zbl:1296.35111
  • François Golse; Benoît Perthame Optimal regularizing effect for scalar conservation laws, Revista Matemática Iberoamericana, Volume 29 (2013) no. 4, pp. 1477-1504 | DOI:10.4171/rmi/765 | Zbl:1288.35343
  • Diogo Arsénio From Boltzmann's equation to the incompressible Navier-Stokes-Fourier system with long-range interactions, Archive for Rational Mechanics and Analysis, Volume 206 (2012) no. 2, pp. 367-488 | DOI:10.1007/s00205-012-0557-9 | Zbl:1257.35140
  • Diogo Arsénio; Nader Masmoudi Regularity of renormalized solutions in the Boltzmann equation with long-range interactions, Communications on Pure and Applied Mathematics, Volume 65 (2012) no. 4, pp. 508-548 | DOI:10.1002/cpa.21385 | Zbl:1234.35172
  • Diogo Arsénio; Laure Saint-Raymond Compactness in kinetic transport equations and hypoellipticity, Journal of Functional Analysis, Volume 261 (2011) no. 10, pp. 3044-3098 | DOI:10.1016/j.jfa.2011.07.020 | Zbl:1231.42023
  • C. David Levermore; Nader Masmoudi From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system, Archive for Rational Mechanics and Analysis, Volume 196 (2010) no. 3, pp. 753-809 | DOI:10.1007/s00205-009-0254-5 | Zbl:1304.35476
  • Ning Jiang; C. David Levermore; Nader Masmoudi Remarks on the Acoustic Limit for the Boltzmann Equation, Communications in Partial Differential Equations, Volume 35 (2010) no. 9, p. 1590 | DOI:10.1080/03605302.2010.496096
  • F. Berthelin; S. Junca Averaging lemmas with a force term in the transport equation, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 93 (2010) no. 2, pp. 113-131 | DOI:10.1016/j.matpur.2009.10.009 | Zbl:1184.35093
  • Daniel Han-Kwan L1 averaging Lemma for transport equations with Lipschitz force fields, Kinetic and Related Models, Volume 3 (2010) no. 4, pp. 669-683 | DOI:10.3934/krm.2010.3.669 | Zbl:1209.35139
  • Pierre-Emmanuel Jabin; Juan Soler A Coupled Boltzmann and Navier–Stokes Fragmentation Model Induced by a Fluid-Particle-Spring Interaction, Multiscale Modeling Simulation, Volume 8 (2010) no. 4, p. 1244 | DOI:10.1137/080735655
  • François Golse; Laure Saint-Raymond The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 91 (2009) no. 5, pp. 508-552 | DOI:10.1016/j.matpur.2009.01.013 | Zbl:1178.35290
  • Anne Nouri An existence result for a quantum BGK model, Mathematical and Computer Modelling, Volume 47 (2008) no. 3-4, pp. 515-529 | DOI:10.1016/j.mcm.2007.05.002 | Zbl:1140.82021
  • Nikolaos Bournaveas; Susana Gutiérrez Averages over Spheres for Kinetic Transport Equations with Velocity Derivatives in the Right-Hand Side, SIAM Journal on Mathematical Analysis, Volume 40 (2008) no. 2, p. 653 | DOI:10.1137/070698415
  • Nader Masmoudi Examples of Singular Limits in Hydrodynamics, Volume 3 (2007), p. 195 | DOI:10.1016/s1874-5717(07)80006-5
  • Eitan Tadmor; Terence Tao Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Communications on Pure and Applied Mathematics, Volume 60 (2007) no. 10, pp. 1488-1521 | DOI:10.1002/cpa.20180 | Zbl:1131.35004
  • Delphine Salort Dispersion and Strichartz estimates for the Liouville equation, Journal of Differential Equations, Volume 233 (2007) no. 2, pp. 543-584 | DOI:10.1016/j.jde.2006.09.011 | Zbl:1154.35043
  • François Golse The Boltzmann Equation and Its Hydrodynamic Limits, Handbook of Differential Equations Evolutionary Equations, Volume 2 (2005), p. 159 | DOI:10.1016/s1874-5717(06)80006-x
  • Vladislav A. Panferov On the interior boundary-value problem for the stationary Povzner equation with hard and soft interactions, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, Volume 3 (2004) no. 4, pp. 771-825 | Zbl:1121.82035
  • François Golse; Laure Saint-Raymond The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Inventiones Mathematicae, Volume 155 (2004) no. 1, pp. 81-161 | DOI:10.1007/s00222-003-0316-5 | Zbl:1060.76101

Cité par 47 documents. Sources : Crossref, zbMATH

Commentaires - Politique