[Moyennisation en vitesse dans L1 pour l'équation de transport]
A new result of L1-compactness for velocity averages of solutions to the transport equation is stated and proved in this Note. This result, proved by a new interpolation argument, extends to the case of any space dimension Lemma 8 of Golse–Lions–Perthame–Sentis [J. Funct. Anal. 76 (1988) 110–125], proved there in space dimension 1 only. This is a key argument in the proof of the hydrodynamic limits of the Boltzmann or BGK equations to the incompressible Euler or Navier–Stokes equations.
On énonce et démontre dans cette Note un nouveau résultat de compacité dans L1 pour les moyennes en vitesse des solutions de l'équation de transport. Ce résultat, établi par un nouvel argument d'interpolation, généralise à toute dimension d'espace le Lemme 8 de Golse–Lions–Perthame–Sentis [J. Funct. Anal. 76 (1988) 110–125], qui n'était jusqu'ici connu qu'en dimension 1 d'espace. C'est un point crucial dans les preuves des limites hydrodynamiques des équations de Boltzmann ou de BGK vers les équations de Navier–Stokes.
Accepté le :
Publié le :
François Golse 1, 2 ; Laure Saint-Raymond 2
@article{CRMATH_2002__334_7_557_0, author = {Fran\c{c}ois Golse and Laure Saint-Raymond}, title = {Velocity averaging in $ \mathrm{L}^{\mathrm{1}}$ for the transport equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {557--562}, publisher = {Elsevier}, volume = {334}, number = {7}, year = {2002}, doi = {10.1016/S1631-073X(02)02302-6}, language = {en}, }
TY - JOUR AU - François Golse AU - Laure Saint-Raymond TI - Velocity averaging in $ \mathrm{L}^{\mathrm{1}}$ for the transport equation JO - Comptes Rendus. Mathématique PY - 2002 SP - 557 EP - 562 VL - 334 IS - 7 PB - Elsevier DO - 10.1016/S1631-073X(02)02302-6 LA - en ID - CRMATH_2002__334_7_557_0 ER -
François Golse; Laure Saint-Raymond. Velocity averaging in $ \mathrm{L}^{\mathrm{1}}$ for the transport equation. Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 557-562. doi : 10.1016/S1631-073X(02)02302-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02302-6/
[1] Spaces of functions with differential-difference characteristics and smoothness of solutions of the transport equation, Soviet Math. Dokl., Volume 29 (1984), pp. 662-666
[2] Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985), pp. 101-118
[3] Kinetic equations and asymptotic theory (B. Perthame; L. Desvillettes, eds.), Series in Appl. Math., 4, Gauthier-Villars, Paris, 2000
[4] Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris, Série I, Volume 322 (1996), pp. 535-540
[5] The averaging lemma, J. Amer. Math. Soc., Volume 14 (2001), pp. 279-296
[6] Lp regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991), pp. 271-288
[7] Regularity of the moments of the solution of a transport equation, J. Funct. Anal., Volume 76 (1988), pp. 110-125
[8] Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale de l'opérateur de transport, C. R. Acad. Sci. Paris, Série I, Volume 301 (1985), pp. 341-344
[9] F. Golse, L. Saint-Raymond, The Navier–Stokes limit for the Boltzmann equation: convergence proof, Preprint. C. R. Acad. Sci. Paris, Série I 333 (2001), to appear
[10] F. Golse, L. Saint-Raymond, in preparation
[11] Théorèmes de trace et d'interpolation I, II, Ann. Scuola Norm. Pisa, Volume 13 (1959), pp. 389-403 14 (1960) 317–331
[12] Régularité optimale des moyennes en vitesse, C. R. Acad. Sci. Paris, Série I, Volume 320 (1995), pp. 911-915 and C. R. Acad. Sci. Paris, Série I 326 (1998) 945–948
[13] Probabilités et potentiel, Hermann, Paris, 1966
[14] L. Saint-Raymond, Thèse de doctorat en mathématiques, Université Paris VII–Denis Diderot, January 2000
[15] L. Saint-Raymond, From the Boltzmann BGK equation to the Navier–Stokes system, Ann. Sci. École Norm. Sup., in press
- The velocity averaging lemma to the relativistic free transport equation, AIMS Mathematics, Volume 10 (2025) no. 4, p. 9369 | DOI:10.3934/math.2025433
- Averaging lemmas and hypoellipticity, Kinetic and Related Models, Volume 18 (2025) no. 5, pp. 800-823 | DOI:10.3934/krm.2025006 | Zbl:8038660
- Stationary solutions to the Boltzmann equation in the plane, Quarterly of Applied Mathematics, Volume 83 (2025) no. 1, pp. 189-209 | DOI:10.1090/qam/1692 | Zbl:7950651
- A remark on the velocity averaging lemma of the transport equation with general case, Networks and Heterogeneous Media, Volume 19 (2024) no. 1, pp. 157-168 | DOI:10.3934/nhm.2024007 | Zbl:1545.35145
- Boundary control for transport equations, Mathematical Control and Related Fields, Volume 13 (2023) no. 2, pp. 721-770 | DOI:10.3934/mcrf.2022014 | Zbl:1518.35566
- Hypocoercivity for perturbation theory and perturbation of hypocoercivity for confined Boltzmann-type collisional equations, S
MA Journal, Volume 80 (2023) no. 1, pp. 27-83 | DOI:10.1007/s40324-021-00281-y | Zbl:1537.35269 - Commutator method for averaging lemmas, Analysis PDE, Volume 15 (2022) no. 6, pp. 1561-1584 | DOI:10.2140/apde.2022.15.1561 | Zbl:1501.35109
- A variational approach to first order kinetic mean field games with local couplings, Communications in Partial Differential Equations, Volume 47 (2022) no. 10, pp. 1945-2022 | DOI:10.1080/03605302.2022.2101003 | Zbl:1498.49070
- A homogenized cerebrospinal fluid model for diffuse optical tomography in the neonatal head, International Journal for Numerical Methods in Biomedical Engineering, Volume 38 (2022) no. 1 | DOI:10.1002/cnm.3538
- A new commutator method for averaging lemmas, Séminaire Laurent Schwartz. EDP et Applications, Volume 2019-2020 (2020), p. ex | DOI:10.5802/slsedp.142 | Zbl:1491.35384
- An energy method for averaging lemmas, Pure and Applied Analysis, Volume 3 (2021) no. 2, pp. 319-362 | DOI:10.2140/paa.2021.3.319 | Zbl:1478.35062
- Global weak solutions to the relativistic BGK equation, Communications in Partial Differential Equations, Volume 45 (2020) no. 3, pp. 191-229 | DOI:10.1080/03605302.2019.1669642 | Zbl:1437.35659
- A vanishing dynamic capillarity limit equation with discontinuous flux, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 6, p. 22 (Id/No 201) | DOI:10.1007/s00033-020-01432-3 | Zbl:1456.35012
- On propagation of higher space regularity for nonlinear Vlasov equations, Analysis PDE, Volume 12 (2019) no. 1, pp. 189-244 | DOI:10.2140/apde.2019.12.189 | Zbl:1398.35243
- Global renormalized solutions and Navier-Stokes limit of the Boltzmann equation with incoming boundary condition for long range interaction, Journal of Differential Equations, Volume 266 (2019) no. 5, pp. 2597-2637 | DOI:10.1016/j.jde.2018.08.040 | Zbl:1477.35113
- Diffusion limit of a Boltzmann-Poisson system with nonlinear equilibrium state, Journal of Hyperbolic Differential Equations, Volume 16 (2019) no. 1, pp. 131-156 | DOI:10.1142/s021989161950005x | Zbl:1428.35263
- The Boltzmann equation with incoming boundary condition: global solutions and Navier-Stokes limit, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, pp. 2504-2534 | DOI:10.1137/17m114697x | Zbl:1419.76566
- On the Boltzmann equation with stochastic kinetic transport: global existence of renormalized martingale solutions, Archive for Rational Mechanics and Analysis, Volume 229 (2018) no. 2, pp. 627-708 | DOI:10.1007/s00205-018-1225-5 | Zbl:1394.35313
- Regularity of velocity averages for transport equations on random discrete velocity grids, Analysis PDE, Volume 10 (2017) no. 5, pp. 1201-1225 | DOI:10.2140/apde.2017.10.1201 | Zbl:1370.35069
- Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in bounded domain I, Communications on Pure and Applied Mathematics, Volume 70 (2017) no. 1, pp. 90-171 | DOI:10.1002/cpa.21631 | Zbl:1362.35233
- Regularity of stochastic kinetic equations, Electronic Journal of Probability, Volume 22 (2017) no. none | DOI:10.1214/17-ejp65
- Stochastic discrete velocity averaging lemmas and Rosseland approximation, Séminaire Laurent Schwartz. EDP et Applications, Volume 2016-2017 (2017), p. ex | DOI:10.5802/slsedp.100 | Zbl:1475.35119
- Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in a bounded domain, Séminaire Laurent Schwartz. EDP et Applications, Volume 2015-2016 (2016), p. ex | DOI:10.5802/slsedp.95 | Zbl:1360.35181
- A mathematical PDE perspective on the Chapman-Enskog expansion, Bulletin of the American Mathematical Society. New Series, Volume 51 (2014) no. 2, pp. 247-275 | DOI:10.1090/s0273-0979-2013-01440-x | Zbl:1295.35353
- Fluid Dynamic Limits of the Kinetic Theory of Gases, From Particle Systems to Partial Differential Equations, Volume 75 (2014), p. 3 | DOI:10.1007/978-3-642-54271-8_1
- A new approach to velocity averaging lemmas in Besov spaces, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 101 (2014) no. 4, pp. 495-551 | DOI:10.1016/j.matpur.2013.06.012 | Zbl:1293.35192
- On
exponential trend to equilibrium for conservative linear kinetic equations on the torus, Journal of Functional Analysis, Volume 266 (2014) no. 11, pp. 6418-6455 | DOI:10.1016/j.jfa.2014.03.019 | Zbl:1304.47055 - Deriving Ohm's law from the Vlasov-Maxwell-Boltzmann system, Trends in contemporary mathematics. Selected talks based on the presentations at the INdAM day, June 18, 2014, Cham: Springer, 2014, pp. 249-262 | DOI:10.1007/978-3-319-05254-0_18 | Zbl:1326.35392
- Entropy inequality and hydrodynamic limits for the Boltzmann equation, Philosophical Transactions of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, Volume 371 (2013) no. 2005, p. 20120350 | DOI:10.1098/rsta.2012.0350 | Zbl:1296.35111
- Optimal regularizing effect for scalar conservation laws, Revista Matemática Iberoamericana, Volume 29 (2013) no. 4, pp. 1477-1504 | DOI:10.4171/rmi/765 | Zbl:1288.35343
- From Boltzmann's equation to the incompressible Navier-Stokes-Fourier system with long-range interactions, Archive for Rational Mechanics and Analysis, Volume 206 (2012) no. 2, pp. 367-488 | DOI:10.1007/s00205-012-0557-9 | Zbl:1257.35140
- Regularity of renormalized solutions in the Boltzmann equation with long-range interactions, Communications on Pure and Applied Mathematics, Volume 65 (2012) no. 4, pp. 508-548 | DOI:10.1002/cpa.21385 | Zbl:1234.35172
- Compactness in kinetic transport equations and hypoellipticity, Journal of Functional Analysis, Volume 261 (2011) no. 10, pp. 3044-3098 | DOI:10.1016/j.jfa.2011.07.020 | Zbl:1231.42023
- From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system, Archive for Rational Mechanics and Analysis, Volume 196 (2010) no. 3, pp. 753-809 | DOI:10.1007/s00205-009-0254-5 | Zbl:1304.35476
- Remarks on the Acoustic Limit for the Boltzmann Equation, Communications in Partial Differential Equations, Volume 35 (2010) no. 9, p. 1590 | DOI:10.1080/03605302.2010.496096
- Averaging lemmas with a force term in the transport equation, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 93 (2010) no. 2, pp. 113-131 | DOI:10.1016/j.matpur.2009.10.009 | Zbl:1184.35093
-
averaging Lemma for transport equations with Lipschitz force fields, Kinetic and Related Models, Volume 3 (2010) no. 4, pp. 669-683 | DOI:10.3934/krm.2010.3.669 | Zbl:1209.35139 - A Coupled Boltzmann and Navier–Stokes Fragmentation Model Induced by a Fluid-Particle-Spring Interaction, Multiscale Modeling Simulation, Volume 8 (2010) no. 4, p. 1244 | DOI:10.1137/080735655
- The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 91 (2009) no. 5, pp. 508-552 | DOI:10.1016/j.matpur.2009.01.013 | Zbl:1178.35290
- An existence result for a quantum BGK model, Mathematical and Computer Modelling, Volume 47 (2008) no. 3-4, pp. 515-529 | DOI:10.1016/j.mcm.2007.05.002 | Zbl:1140.82021
- Averages over Spheres for Kinetic Transport Equations with Velocity Derivatives in the Right-Hand Side, SIAM Journal on Mathematical Analysis, Volume 40 (2008) no. 2, p. 653 | DOI:10.1137/070698415
- Examples of Singular Limits in Hydrodynamics, Volume 3 (2007), p. 195 | DOI:10.1016/s1874-5717(07)80006-5
- Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Communications on Pure and Applied Mathematics, Volume 60 (2007) no. 10, pp. 1488-1521 | DOI:10.1002/cpa.20180 | Zbl:1131.35004
- Dispersion and Strichartz estimates for the Liouville equation, Journal of Differential Equations, Volume 233 (2007) no. 2, pp. 543-584 | DOI:10.1016/j.jde.2006.09.011 | Zbl:1154.35043
- The Boltzmann Equation and Its Hydrodynamic Limits, Handbook of Differential Equations Evolutionary Equations, Volume 2 (2005), p. 159 | DOI:10.1016/s1874-5717(06)80006-x
- On the interior boundary-value problem for the stationary Povzner equation with hard and soft interactions, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, Volume 3 (2004) no. 4, pp. 771-825 | Zbl:1121.82035
- The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Inventiones Mathematicae, Volume 155 (2004) no. 1, pp. 81-161 | DOI:10.1007/s00222-003-0316-5 | Zbl:1060.76101
Cité par 47 documents. Sources : Crossref, zbMATH
Commentaires - Politique