[Inégalité de Santaló sur
On donne une nouvelle approche de l'inégalité de Santaló en combinant l'interpolation complexe et la généralisation de l'inégalité de Prékopa obtenue par Berntdsson.
A new approach to Santaló's inequality on
Accepté le :
Publié le :
Dario Cordero-Erausquin 1
@article{CRMATH_2002__334_9_767_0, author = {Dario Cordero-Erausquin}, title = {Santal\'o's inequality on $ \mathbb{C}^{n}$ by complex interpolation}, journal = {Comptes Rendus. Math\'ematique}, pages = {767--772}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02328-2}, language = {en}, }
Dario Cordero-Erausquin. Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 767-772. doi : 10.1016/S1631-073X(02)02328-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02328-2/
[1] Interpolation Spaces. An Introduction, Springer, Berlin, 1976
[2] Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions, Math. Ann., Volume 312 (1998), pp. 785-792
[3] An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990
[4] On the Blaschke–Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93
[5] On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343
[6] Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugal Math., Volume 8 (1949), pp. 155-1961
-
Blaschke–Santaló and Petty projection inequalities in Gaussian space, Archiv der Mathematik, Volume 122 (2024) no. 3, p. 331 | DOI:10.1007/s00013-023-01959-7 - Plurisubharmonic Interpolation and Plurisubharmonic Geodesics, Axioms, Volume 12 (2023) no. 7, p. 671 | DOI:10.3390/axioms12070671
- Stability of polydisc slicing, Mathematika, Volume 69 (2023) no. 4, p. 1165 | DOI:10.1112/mtk.12225
- On p-Brunn–Minkowski inequalities for intrinsic volumes, with
, Mathematische Annalen, Volume 387 (2023) no. 1-2, p. 321 | DOI:10.1007/s00208-022-02454-0 - A Zoo of Dualities, The Journal of Geometric Analysis, Volume 33 (2023) no. 8 | DOI:10.1007/s12220-023-01302-0
- Local 𝐿^𝑝-Brunn–Minkowski inequalities for 𝑝<1, Memoirs of the American Mathematical Society, Volume 277 (2022) no. 1360 | DOI:10.1090/memo/1360
- Interpolation of Weighted Extremal Functions, Arnold Mathematical Journal, Volume 7 (2021) no. 3, p. 407 | DOI:10.1007/s40598-021-00175-x
- Equivalence of the local and global versions of the L-Brunn-Minkowski inequality, Journal of Functional Analysis, Volume 280 (2021) no. 9, p. 108956 | DOI:10.1016/j.jfa.2021.108956
- Several Results Regarding the (B)-Conjecture, Geometric Aspects of Functional Analysis, Volume 2256 (2020), p. 247 | DOI:10.1007/978-3-030-36020-7_11
- Plurisubharmonic geodesics and interpolating sets, Archiv der Mathematik, Volume 113 (2019) no. 1, p. 63 | DOI:10.1007/s00013-018-01297-z
- Non-standard Constructions in Convex Geometry: Geometric Means of Convex Bodies, Convexity and Concentration, Volume 161 (2017), p. 361 | DOI:10.1007/978-1-4939-7005-6_12
- The Finite Rank Theorem for Toeplitz Operators on the Fock Space, The Journal of Geometric Analysis, Volume 25 (2015) no. 1, p. 347 | DOI:10.1007/s12220-013-9432-7
- Cauchy–Riemann meet Monge–Ampère, Bulletin of Mathematical Sciences, Volume 4 (2014) no. 3, p. 433 | DOI:10.1007/s13373-014-0058-2
- Interpolations, Convexity and Geometric Inequalities, Geometric Aspects of Functional Analysis, Volume 2050 (2012), p. 151 | DOI:10.1007/978-3-642-29849-3_9
- Inequalities for Exit times and Eigenvalues of Balls, Potential Analysis, Volume 35 (2011) no. 3, p. 287 | DOI:10.1007/s11118-010-9213-x
- Geometrization of Probability, Geometry and Dynamics of Groups and Spaces, Volume 265 (2008), p. 647 | DOI:10.1007/978-3-7643-8608-5_15
- Some functional forms of Blaschke–Santaló inequality, Mathematische Zeitschrift, Volume 256 (2007) no. 2, p. 379 | DOI:10.1007/s00209-006-0078-z
- On Berndtsson?s generalization of Pr�kopa?s theorem, Mathematische Zeitschrift, Volume 249 (2005) no. 2, p. 401 | DOI:10.1007/s00209-004-0704-6
- The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, Journal of Functional Analysis, Volume 214 (2004) no. 2, p. 410 | DOI:10.1016/j.jfa.2003.12.001
- Geometric inequalities for a class of exponential measures, Proceedings of the American Mathematical Society, Volume 133 (2004) no. 4, p. 1213 | DOI:10.1090/s0002-9939-04-07862-1
Cité par 20 documents. Sources : Crossref
Commentaires - Politique