Comptes Rendus
Santaló's inequality on n by complex interpolation
[Inégalité de Santaló sur n par interpolation complexe]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 767-772.

A new approach to Santaló's inequality on n is obtained by combining complex interpolation and Berndtsson's generalization of Prékopa's inequality.

On donne une nouvelle approche de l'inégalité de Santaló en combinant l'interpolation complexe et la généralisation de l'inégalité de Prékopa obtenue par Berntdsson.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02328-2

Dario Cordero-Erausquin 1

1 Laboratoire d'analyse et de mathématiques appliquées (CNRS UMR 8050), Université de Marne la Vallée, 77454 Marne la Vallée cedex 2, France
@article{CRMATH_2002__334_9_767_0,
     author = {Dario Cordero-Erausquin},
     title = {Santal\'o's inequality on $ \mathbb{C}^{n}$ by complex interpolation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {767--772},
     publisher = {Elsevier},
     volume = {334},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02328-2},
     language = {en},
}
TY  - JOUR
AU  - Dario Cordero-Erausquin
TI  - Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 767
EP  - 772
VL  - 334
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02328-2
LA  - en
ID  - CRMATH_2002__334_9_767_0
ER  - 
%0 Journal Article
%A Dario Cordero-Erausquin
%T Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation
%J Comptes Rendus. Mathématique
%D 2002
%P 767-772
%V 334
%N 9
%I Elsevier
%R 10.1016/S1631-073X(02)02328-2
%G en
%F CRMATH_2002__334_9_767_0
Dario Cordero-Erausquin. Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 767-772. doi : 10.1016/S1631-073X(02)02328-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02328-2/

[1] J. Bergh; J. Löftröm Interpolation Spaces. An Introduction, Springer, Berlin, 1976

[2] B. Berndtsson Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions, Math. Ann., Volume 312 (1998), pp. 785-792

[3] L. Hörmander An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990

[4] M. Meyer; A. Pajor On the Blaschke–Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93

[5] A. Prékopa On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343

[6] L. Santaló Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugal Math., Volume 8 (1949), pp. 155-1961

  • Junjie Shan; Wenxue Xu; Leiqin Yin Lp Blaschke-Santaló and Petty projection inequalities in Gaussian space, Archiv der Mathematik, Volume 122 (2024) no. 3, pp. 331-342 | DOI:10.1007/s00013-023-01959-7 | Zbl:1533.52010
  • Alexander Rashkovskii Plurisubharmonic Interpolation and Plurisubharmonic Geodesics, Axioms, Volume 12 (2023) no. 7, p. 671 | DOI:10.3390/axioms12070671
  • Nathaniel Glover; Tomasz Tkocz; Katarzyna Wyczesany Stability of polydisc slicing, Mathematika, Volume 69 (2023) no. 4, pp. 1165-1182 | DOI:10.1112/mtk.12225 | Zbl:1527.32033
  • Chiara Bianchini; Andrea Colesanti; Daniele Pagnini; Alberto Roncoroni On p-Brunn-Minkowski inequalities for intrinsic volumes, with 0p<1, Mathematische Annalen, Volume 387 (2023) no. 1-2, pp. 321-352 | DOI:10.1007/s00208-022-02454-0 | Zbl:1552.52008
  • S. Artstein-Avidan; S. Sadovsky; K. Wyczesany A zoo of dualities, The Journal of Geometric Analysis, Volume 33 (2023) no. 8, p. 40 (Id/No 238) | DOI:10.1007/s12220-023-01302-0 | Zbl:7695034
  • Alexander V. Kolesnikov; Emanuel Milman Local Lp-Brunn-Minkowski inequalities for p<1, Memoirs of the American Mathematical Society, 1360, Providence, RI: American Mathematical Society (AMS), 2022 | DOI:10.1090/memo/1360 | Zbl:1502.52002
  • Alexander Rashkovskii Interpolation of weighted extremal functions, Arnold Mathematical Journal, Volume 7 (2021) no. 3, pp. 407-417 | DOI:10.1007/s40598-021-00175-x | Zbl:1490.32004
  • Eli Putterman Equivalence of the local and global versions of the Lp-Brunn-Minkowski inequality, Journal of Functional Analysis, Volume 280 (2021) no. 9, p. 20 (Id/No 108956) | DOI:10.1016/j.jfa.2021.108956 | Zbl:1461.52010
  • Dario Cordero-Erausquin; Liran Rotem Several results regarding the (B)-conjecture, Geometric aspects of functional analysis. Israel seminar (GAFA) 2017–2019. Volume 1, Cham: Springer, 2020, pp. 247-262 | DOI:10.1007/978-3-030-36020-7_11 | Zbl:1447.52011
  • Dario Cordero-Erausquin; Alexander Rashkovskii Plurisubharmonic geodesics and interpolating sets, Archiv der Mathematik, Volume 113 (2019) no. 1, pp. 63-72 | DOI:10.1007/s00013-018-01297-z | Zbl:1429.32021
  • Bo Berndtsson Complex Brunn-Minkowski inequalities and their applications in geometry, European congress of mathematics. Proceedings of the 7th ECM (7ECM) congress, Berlin, Germany, July 18–22, 2016, Zürich: European Mathematical Society (EMS), 2018, pp. 443-457 | DOI:10.4171/176-1/21 | Zbl:1403.32009
  • Vitali Milman; Liran Rotem Non-standard Constructions in Convex Geometry: Geometric Means of Convex Bodies, Convexity and Concentration, Volume 161 (2017), p. 361 | DOI:10.1007/978-1-4939-7005-6_12
  • Alexander Borichev; Grigori Rozenblum The finite rank theorem for Toeplitz operators on the Fock space, The Journal of Geometric Analysis, Volume 25 (2015) no. 1, pp. 347-356 | DOI:10.1007/s12220-013-9432-7 | Zbl:1339.47036
  • Zbigniew Błocki Cauchy-Riemann meet Monge-Ampère, Bulletin of Mathematical Sciences, Volume 4 (2014) no. 3, pp. 433-480 | DOI:10.1007/s13373-014-0058-2 | Zbl:1310.32004
  • Dario Cordero-Erausquin; Bo’az Klartag Interpolations, Convexity and Geometric Inequalities, Geometric Aspects of Functional Analysis, Volume 2050 (2012), p. 151 | DOI:10.1007/978-3-642-29849-3_9
  • M. Schmuckenschläger Inequalities for exit times and eigenvalues of balls, Potential Analysis, Volume 35 (2011) no. 3, pp. 287-300 | DOI:10.1007/s11118-010-9213-x | Zbl:1234.60085
  • Vitali D. Milman Geometrization of Probability, Geometry and Dynamics of Groups and Spaces, Volume 265 (2008), p. 647 | DOI:10.1007/978-3-7643-8608-5_15
  • M. Fradelizi; M. Meyer Some functional forms of Blaschke-Santaló inequality, Mathematische Zeitschrift, Volume 256 (2007) no. 2, pp. 379-395 | DOI:10.1007/s00209-006-0078-z | Zbl:1128.52007
  • Bo Berndtsson Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Annales de l'Institut Fourier, Volume 56 (2006) no. 6, pp. 1633-1662 | DOI:10.5802/aif.2223 | Zbl:1120.32021
  • Dario Cordero-Erausquin On Berndtsson's generalization of Prékopa's theorem, Mathematische Zeitschrift, Volume 249 (2005) no. 2, pp. 401-410 | DOI:10.1007/s00209-004-0704-6 | Zbl:1079.32020
  • Hermann König; Nicole Tomczak-Jaegermann Geometric inequalities for a class of exponential measures, Proceedings of the American Mathematical Society, Volume 133 (2005) no. 4, pp. 1213-1221 | DOI:10.1090/s0002-9939-04-07862-1 | Zbl:1079.46004
  • D. Cordero-Erausquin; M. Fradelizi; B. Maurey The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, Journal of Functional Analysis, Volume 214 (2004) no. 2, pp. 410-427 | DOI:10.1016/j.jfa.2003.12.001 | Zbl:1073.60042

Cité par 22 documents. Sources : Crossref, zbMATH

Commentaires - Politique