Comptes Rendus
Functional Analysis
A direct proof of the functional Santaló inequality
[Une preuve directe de l'inégalité de Santaló fonctionnelle]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 55-58.

On présente une démonstration simple d'une version fonctionnelle de l'inégalité de Blaschke–Santaló, due à Artstein, Klartag et Milman. On procède par récurrence sur la dimension, sans faire appel à l'inégalité ensembliste.

We give a simple proof of a functional version of the Blaschke–Santaló inequality due to Artstein, Klartag and Milman. The proof is by induction on the dimension and does not use the Blaschke–Santaló inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.11.015

Joseph Lehec 1

1 Université Paris-Est, Laboratoire d'analyse et de mathématiques appliquées, cité Descartes, 5, boulevard Descartes, 77454 Marne la Vallée cedex 2, France
@article{CRMATH_2009__347_1-2_55_0,
     author = {Joseph Lehec},
     title = {A direct proof of the functional {Santal\'o} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {55--58},
     publisher = {Elsevier},
     volume = {347},
     number = {1-2},
     year = {2009},
     doi = {10.1016/j.crma.2008.11.015},
     language = {en},
}
TY  - JOUR
AU  - Joseph Lehec
TI  - A direct proof of the functional Santaló inequality
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 55
EP  - 58
VL  - 347
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2008.11.015
LA  - en
ID  - CRMATH_2009__347_1-2_55_0
ER  - 
%0 Journal Article
%A Joseph Lehec
%T A direct proof of the functional Santaló inequality
%J Comptes Rendus. Mathématique
%D 2009
%P 55-58
%V 347
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2008.11.015
%G en
%F CRMATH_2009__347_1-2_55_0
Joseph Lehec. A direct proof of the functional Santaló inequality. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 55-58. doi : 10.1016/j.crma.2008.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.015/

[1] S. Artstein; B. Klartag; V. Milman The Santaló point of a function, and a functional form of Santaló inequality, Mathematika, Volume 51 (2005), pp. 33-48

[2] K. Ball, Isometric problems in p and sections of convex sets, Doctoral thesis, University of Cambridge, 1986

[3] K. Ball An elementary introduction to modern convex geometry (S. Levy, ed.), Flavors of Geometry, Cambridge University Press, 1997

[4] M. Fradelizi; M. Meyer Some functional forms of Blaschke–Santaló inequality, Math. Z., Volume 256 (2007) no. 2, pp. 379-395

[5] J. Lehec, Partitions and functional Santaló inequalities, Arch. Math. (Basel) (2008), in press

[6] E. Lutwak Extended affine surface area, Adv. Math., Volume 85 (1991) no. 1, pp. 39-68

[7] M. Meyer; A. Pajor On the Blaschke Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93

Cité par Sources :

Commentaires - Politique