[Une preuve directe de l'inégalité de Santaló fonctionnelle]
On présente une démonstration simple d'une version fonctionnelle de l'inégalité de Blaschke–Santaló, due à Artstein, Klartag et Milman. On procède par récurrence sur la dimension, sans faire appel à l'inégalité ensembliste.
We give a simple proof of a functional version of the Blaschke–Santaló inequality due to Artstein, Klartag and Milman. The proof is by induction on the dimension and does not use the Blaschke–Santaló inequality.
Accepté le :
Publié le :
Joseph Lehec 1
@article{CRMATH_2009__347_1-2_55_0, author = {Joseph Lehec}, title = {A direct proof of the functional {Santal\'o} inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {55--58}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.015}, language = {en}, }
Joseph Lehec. A direct proof of the functional Santaló inequality. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 55-58. doi : 10.1016/j.crma.2008.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.015/
[1] The Santaló point of a function, and a functional form of Santaló inequality, Mathematika, Volume 51 (2005), pp. 33-48
[2] K. Ball, Isometric problems in
[3] An elementary introduction to modern convex geometry (S. Levy, ed.), Flavors of Geometry, Cambridge University Press, 1997
[4] Some functional forms of Blaschke–Santaló inequality, Math. Z., Volume 256 (2007) no. 2, pp. 379-395
[5] J. Lehec, Partitions and functional Santaló inequalities, Arch. Math. (Basel) (2008), in press
[6] Extended affine surface area, Adv. Math., Volume 85 (1991) no. 1, pp. 39-68
[7] On the Blaschke Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93
- Duality and Heat flow, Advances in Mathematics, Volume 467 (2025), p. 110161 | DOI:10.1016/j.aim.2025.110161
-
Blaschke–Santaló and Petty projection inequalities in Gaussian space, Archiv der Mathematik, Volume 122 (2024) no. 3, p. 331 | DOI:10.1007/s00013-023-01959-7 - Stochastic proof of the sharp symmetrized Talagrand inequality, Comptes Rendus. Mathématique, Volume 362 (2024) no. G12, p. 1779 | DOI:10.5802/crmath.681
- Projection Body and Isoperimetric Inequalities for s-Concave Functions, Chinese Annals of Mathematics, Series B, Volume 44 (2023) no. 3, p. 465 | DOI:10.1007/s11401-023-0025-x
- Dualities, Measure Concentration and Transportation, Convex Geometry, Volume 2332 (2023), p. 159 | DOI:10.1007/978-3-031-37883-6_4
- On a j-Santaló conjecture, Geometriae Dedicata, Volume 217 (2023) no. 5 | DOI:10.1007/s10711-023-00832-9
- The Functional Form of Mahler’s Conjecture for Even Log-Concave Functions in Dimension 2, International Mathematics Research Notices, Volume 2023 (2023) no. 12, p. 10067 | DOI:10.1093/imrn/rnac120
- Blaschke–Santaló Inequalities for Minkowski and Asplund Endomorphisms, International Mathematics Research Notices, Volume 2023 (2023) no. 2, p. 1378 | DOI:10.1093/imrn/rnab262
- Equivariant endomorphisms of convex functions, Journal of Functional Analysis, Volume 285 (2023) no. 1, p. 109922 | DOI:10.1016/j.jfa.2023.109922
- Blaschke–Santaló inequality for many functions and geodesic barycenters of measures, Advances in Mathematics, Volume 396 (2022), p. 108110 | DOI:10.1016/j.aim.2021.108110
- The Deficit in the Gaussian Log-Sobolev Inequality and Inverse Santaló Inequalities, International Mathematics Research Notices, Volume 2022 (2022) no. 17, p. 12940 | DOI:10.1093/imrn/rnab087
- SYMMETRIZED TALAGRAND INEQUALITIES ON EUCLIDEAN SPACES, Kyushu Journal of Mathematics, Volume 76 (2022) no. 1, p. 119 | DOI:10.2206/kyushujm.76.119
- Affine Invariant Maps for Log-Concave Functions, The Journal of Geometric Analysis, Volume 32 (2022) no. 4 | DOI:10.1007/s12220-022-00878-3
- A stochastic Prékopa–Leindler inequality for log-concave functions, Communications in Contemporary Mathematics, Volume 23 (2021) no. 02, p. 2050019 | DOI:10.1142/s0219199720500194
- The Löwner Function of a Log-Concave Function, The Journal of Geometric Analysis, Volume 31 (2021) no. 1, p. 423 | DOI:10.1007/s12220-019-00270-8
- Euclidean Forward–Reverse Brascamp–Lieb Inequalities: Finiteness, Structure, and Extremals, The Journal of Geometric Analysis, Volume 31 (2021) no. 4, p. 3300 | DOI:10.1007/s12220-020-00398-y
- Functional Geominimal Surface Area and Its Related Affine Isoperimetric Inequality, Journal of Function Spaces, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/3039598
- The Minimal Perimeter of a Log-Concave Function, Mathematics, Volume 8 (2020) no. 8, p. 1365 | DOI:10.3390/math8081365
- The mixed Lp affine surface areas for functions, Quaestiones Mathematicae, Volume 42 (2019) no. 2, p. 257 | DOI:10.2989/16073606.2018.1444678
- LYZ ellipsoid and Petty projection body for log-concave functions, Advances in Mathematics, Volume 340 (2018), p. 914 | DOI:10.1016/j.aim.2018.10.029
- A sharp symmetrized form of Talagrand’s transport-entropy inequality for the Gaussian measure, Electronic Communications in Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ecp179
- Forward and Reverse Entropy Power Inequalities in Convex Geometry, Convexity and Concentration, Volume 161 (2017), p. 427 | DOI:10.1007/978-1-4939-7005-6_14
- Stability Results for Some Geometric Inequalities and Their Functional Versions, Convexity and Concentration, Volume 161 (2017), p. 541 | DOI:10.1007/978-1-4939-7005-6_17
- The functional version of the Ball inequality, Proceedings of the American Mathematical Society, Volume 145 (2017) no. 8, p. 3531 | DOI:10.1090/proc/13660
- Affine isoperimetric inequalities in the functional Orlicz–Brunn–Minkowski theory, Advances in Applied Mathematics, Volume 81 (2016), p. 78 | DOI:10.1016/j.aam.2016.06.007
- CONCAVITY PROPERTIES OF EXTENSIONS OF THE PARALLEL VOLUME, Mathematika, Volume 62 (2016) no. 1, p. 266 | DOI:10.1112/s0025579314000369
- Mixedf-divergence and inequalities for log-concave functions, Proceedings of the London Mathematical Society, Volume 110 (2015) no. 2, p. 271 | DOI:10.1112/plms/pdu055
- Divergence for s -concave and log concave functions, Advances in Mathematics, Volume 257 (2014), p. 219 | DOI:10.1016/j.aim.2014.02.013
- Stability of the functional forms of the Blaschke-Santaló inequality, Monatshefte für Mathematik, Volume 173 (2014) no. 2, p. 135 | DOI:10.1007/s00605-013-0499-9
- The first variation of the total mass of log-concave functions and related inequalities, Advances in Mathematics, Volume 244 (2013), p. 708 | DOI:10.1016/j.aim.2013.05.015
- Variations on R. Schwartz’s Inequality for the Schwarzian Derivative, Discrete Computational Geometry, Volume 46 (2011) no. 4, p. 724 | DOI:10.1007/s00454-011-9371-7
Cité par 31 documents. Sources : Crossref
Commentaires - Politique