Comptes Rendus
Functional Analysis
A direct proof of the functional Santaló inequality
[Une preuve directe de l'inégalité de Santaló fonctionnelle]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 55-58.

On présente une démonstration simple d'une version fonctionnelle de l'inégalité de Blaschke–Santaló, due à Artstein, Klartag et Milman. On procède par récurrence sur la dimension, sans faire appel à l'inégalité ensembliste.

We give a simple proof of a functional version of the Blaschke–Santaló inequality due to Artstein, Klartag and Milman. The proof is by induction on the dimension and does not use the Blaschke–Santaló inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.11.015

Joseph Lehec 1

1 Université Paris-Est, Laboratoire d'analyse et de mathématiques appliquées, cité Descartes, 5, boulevard Descartes, 77454 Marne la Vallée cedex 2, France
@article{CRMATH_2009__347_1-2_55_0,
     author = {Joseph Lehec},
     title = {A direct proof of the functional {Santal\'o} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {55--58},
     publisher = {Elsevier},
     volume = {347},
     number = {1-2},
     year = {2009},
     doi = {10.1016/j.crma.2008.11.015},
     language = {en},
}
TY  - JOUR
AU  - Joseph Lehec
TI  - A direct proof of the functional Santaló inequality
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 55
EP  - 58
VL  - 347
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2008.11.015
LA  - en
ID  - CRMATH_2009__347_1-2_55_0
ER  - 
%0 Journal Article
%A Joseph Lehec
%T A direct proof of the functional Santaló inequality
%J Comptes Rendus. Mathématique
%D 2009
%P 55-58
%V 347
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2008.11.015
%G en
%F CRMATH_2009__347_1-2_55_0
Joseph Lehec. A direct proof of the functional Santaló inequality. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 55-58. doi : 10.1016/j.crma.2008.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.015/

[1] S. Artstein; B. Klartag; V. Milman The Santaló point of a function, and a functional form of Santaló inequality, Mathematika, Volume 51 (2005), pp. 33-48

[2] K. Ball, Isometric problems in p and sections of convex sets, Doctoral thesis, University of Cambridge, 1986

[3] K. Ball An elementary introduction to modern convex geometry (S. Levy, ed.), Flavors of Geometry, Cambridge University Press, 1997

[4] M. Fradelizi; M. Meyer Some functional forms of Blaschke–Santaló inequality, Math. Z., Volume 256 (2007) no. 2, pp. 379-395

[5] J. Lehec, Partitions and functional Santaló inequalities, Arch. Math. (Basel) (2008), in press

[6] E. Lutwak Extended affine surface area, Adv. Math., Volume 85 (1991) no. 1, pp. 39-68

[7] M. Meyer; A. Pajor On the Blaschke Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93

  • D. Cordero-Erausquin; N. Gozlan; S. Nakamura; H. Tsuji Duality and Heat flow, Advances in Mathematics, Volume 467 (2025), p. 110161 | DOI:10.1016/j.aim.2025.110161
  • Junjie Shan; Wenxue Xu; Leiqin Yin Lp Blaschke–Santaló and Petty projection inequalities in Gaussian space, Archiv der Mathematik, Volume 122 (2024) no. 3, p. 331 | DOI:10.1007/s00013-023-01959-7
  • Thomas A. Courtade; Max Fathi; Dan Mikulincer Stochastic proof of the sharp symmetrized Talagrand inequality, Comptes Rendus. Mathématique, Volume 362 (2024) no. G12, p. 1779 | DOI:10.5802/crmath.681
  • Niufa Fang; Jiazu Zhou Projection Body and Isoperimetric Inequalities for s-Concave Functions, Chinese Annals of Mathematics, Series B, Volume 44 (2023) no. 3, p. 465 | DOI:10.1007/s11401-023-0025-x
  • Shiri Artstein-Avidan Dualities, Measure Concentration and Transportation, Convex Geometry, Volume 2332 (2023), p. 159 | DOI:10.1007/978-3-031-37883-6_4
  • Pavlos Kalantzopoulos; Christos Saroglou On a j-Santaló conjecture, Geometriae Dedicata, Volume 217 (2023) no. 5 | DOI:10.1007/s10711-023-00832-9
  • Matthieu Fradelizi; Elie Nakhle The Functional Form of Mahler’s Conjecture for Even Log-Concave Functions in Dimension 2, International Mathematics Research Notices, Volume 2023 (2023) no. 12, p. 10067 | DOI:10.1093/imrn/rnac120
  • Georg C Hofstätter; Franz E Schuster Blaschke–Santaló Inequalities for Minkowski and Asplund Endomorphisms, International Mathematics Research Notices, Volume 2023 (2023) no. 2, p. 1378 | DOI:10.1093/imrn/rnab262
  • Georg C. Hofstätter; Jonas Knoerr Equivariant endomorphisms of convex functions, Journal of Functional Analysis, Volume 285 (2023) no. 1, p. 109922 | DOI:10.1016/j.jfa.2023.109922
  • Alexander V. Kolesnikov; Elisabeth M. Werner Blaschke–Santaló inequality for many functions and geodesic barycenters of measures, Advances in Mathematics, Volume 396 (2022), p. 108110 | DOI:10.1016/j.aim.2021.108110
  • Nathael Gozlan The Deficit in the Gaussian Log-Sobolev Inequality and Inverse Santaló Inequalities, International Mathematics Research Notices, Volume 2022 (2022) no. 17, p. 12940 | DOI:10.1093/imrn/rnab087
  • Hiroshi TSUJI SYMMETRIZED TALAGRAND INEQUALITIES ON EUCLIDEAN SPACES, Kyushu Journal of Mathematics, Volume 76 (2022) no. 1, p. 119 | DOI:10.2206/kyushujm.76.119
  • Ben Li; Carsten Schütt; Elisabeth M. Werner Affine Invariant Maps for Log-Concave Functions, The Journal of Geometric Analysis, Volume 32 (2022) no. 4 | DOI:10.1007/s12220-022-00878-3
  • Peter Pivovarov; Jesus Rebollo Bueno A stochastic Prékopa–Leindler inequality for log-concave functions, Communications in Contemporary Mathematics, Volume 23 (2021) no. 02, p. 2050019 | DOI:10.1142/s0219199720500194
  • Ben Li; Carsten Schütt; Elisabeth M. Werner The Löwner Function of a Log-Concave Function, The Journal of Geometric Analysis, Volume 31 (2021) no. 1, p. 423 | DOI:10.1007/s12220-019-00270-8
  • Thomas A. Courtade; Jingbo Liu Euclidean Forward–Reverse Brascamp–Lieb Inequalities: Finiteness, Structure, and Extremals, The Journal of Geometric Analysis, Volume 31 (2021) no. 4, p. 3300 | DOI:10.1007/s12220-020-00398-y
  • Niufa Fang; Jin Yang Functional Geominimal Surface Area and Its Related Affine Isoperimetric Inequality, Journal of Function Spaces, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/3039598
  • Niufa Fang; Zengle Zhang The Minimal Perimeter of a Log-Concave Function, Mathematics, Volume 8 (2020) no. 8, p. 1365 | DOI:10.3390/math8081365
  • Baocheng Zhu; Sudan Xing The mixed Lp affine surface areas for functions, Quaestiones Mathematicae, Volume 42 (2019) no. 2, p. 257 | DOI:10.2989/16073606.2018.1444678
  • Niufa Fang; Jiazu Zhou LYZ ellipsoid and Petty projection body for log-concave functions, Advances in Mathematics, Volume 340 (2018), p. 914 | DOI:10.1016/j.aim.2018.10.029
  • Max Fathi A sharp symmetrized form of Talagrand’s transport-entropy inequality for the Gaussian measure, Electronic Communications in Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ecp179
  • Mokshay Madiman; James Melbourne; Peng Xu Forward and Reverse Entropy Power Inequalities in Convex Geometry, Convexity and Concentration, Volume 161 (2017), p. 427 | DOI:10.1007/978-1-4939-7005-6_14
  • Umut Caglar; Elisabeth M. Werner Stability Results for Some Geometric Inequalities and Their Functional Versions, Convexity and Concentration, Volume 161 (2017), p. 541 | DOI:10.1007/978-1-4939-7005-6_17
  • Qingzhong Huang; Ai-Jun Li The functional version of the Ball inequality, Proceedings of the American Mathematical Society, Volume 145 (2017) no. 8, p. 3531 | DOI:10.1090/proc/13660
  • Umut Caglar; Deping Ye Affine isoperimetric inequalities in the functional Orlicz–Brunn–Minkowski theory, Advances in Applied Mathematics, Volume 81 (2016), p. 78 | DOI:10.1016/j.aam.2016.06.007
  • Arnaud Marsiglietti CONCAVITY PROPERTIES OF EXTENSIONS OF THE PARALLEL VOLUME, Mathematika, Volume 62 (2016) no. 1, p. 266 | DOI:10.1112/s0025579314000369
  • Umut Caglar; Elisabeth M. Werner Mixedf-divergence and inequalities for log-concave functions, Proceedings of the London Mathematical Society, Volume 110 (2015) no. 2, p. 271 | DOI:10.1112/plms/pdu055
  • Umut Caglar; Elisabeth M. Werner Divergence for s -concave and log concave functions, Advances in Mathematics, Volume 257 (2014), p. 219 | DOI:10.1016/j.aim.2014.02.013
  • Franck Barthe; Károly J. Böröczky; Matthieu Fradelizi Stability of the functional forms of the Blaschke-Santaló inequality, Monatshefte für Mathematik, Volume 173 (2014) no. 2, p. 135 | DOI:10.1007/s00605-013-0499-9
  • Andrea Colesanti; Ilaria Fragalà The first variation of the total mass of log-concave functions and related inequalities, Advances in Mathematics, Volume 244 (2013), p. 708 | DOI:10.1016/j.aim.2013.05.015
  • Serge Tabachnikov Variations on R. Schwartz’s Inequality for the Schwarzian Derivative, Discrete Computational Geometry, Volume 46 (2011) no. 4, p. 724 | DOI:10.1007/s00454-011-9371-7

Cité par 31 documents. Sources : Crossref

Commentaires - Politique