[Une preuve directe de l'inégalité de Santaló fonctionnelle]
On présente une démonstration simple d'une version fonctionnelle de l'inégalité de Blaschke–Santaló, due à Artstein, Klartag et Milman. On procède par récurrence sur la dimension, sans faire appel à l'inégalité ensembliste.
We give a simple proof of a functional version of the Blaschke–Santaló inequality due to Artstein, Klartag and Milman. The proof is by induction on the dimension and does not use the Blaschke–Santaló inequality.
Accepté le :
Publié le :
Joseph Lehec 1
@article{CRMATH_2009__347_1-2_55_0, author = {Joseph Lehec}, title = {A direct proof of the functional {Santal\'o} inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {55--58}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.015}, language = {en}, }
Joseph Lehec. A direct proof of the functional Santaló inequality. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 55-58. doi : 10.1016/j.crma.2008.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.015/
[1] The Santaló point of a function, and a functional form of Santaló inequality, Mathematika, Volume 51 (2005), pp. 33-48
[2] K. Ball, Isometric problems in and sections of convex sets, Doctoral thesis, University of Cambridge, 1986
[3] An elementary introduction to modern convex geometry (S. Levy, ed.), Flavors of Geometry, Cambridge University Press, 1997
[4] Some functional forms of Blaschke–Santaló inequality, Math. Z., Volume 256 (2007) no. 2, pp. 379-395
[5] J. Lehec, Partitions and functional Santaló inequalities, Arch. Math. (Basel) (2008), in press
[6] Extended affine surface area, Adv. Math., Volume 85 (1991) no. 1, pp. 39-68
[7] On the Blaschke Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93
Cité par Sources :
Commentaires - Politique