A new approach to Santaló's inequality on is obtained by combining complex interpolation and Berndtsson's generalization of Prékopa's inequality.
On donne une nouvelle approche de l'inégalité de Santaló en combinant l'interpolation complexe et la généralisation de l'inégalité de Prékopa obtenue par Berntdsson.
Accepted:
Published online:
Dario Cordero-Erausquin 1
@article{CRMATH_2002__334_9_767_0, author = {Dario Cordero-Erausquin}, title = {Santal\'o's inequality on $ \mathbb{C}^{n}$ by complex interpolation}, journal = {Comptes Rendus. Math\'ematique}, pages = {767--772}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02328-2}, language = {en}, }
Dario Cordero-Erausquin. Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 767-772. doi : 10.1016/S1631-073X(02)02328-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02328-2/
[1] Interpolation Spaces. An Introduction, Springer, Berlin, 1976
[2] Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions, Math. Ann., Volume 312 (1998), pp. 785-792
[3] An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990
[4] On the Blaschke–Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93
[5] On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343
[6] Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugal Math., Volume 8 (1949), pp. 155-1961
Cited by Sources:
Comments - Policy