Comptes Rendus
Santaló's inequality on n by complex interpolation
Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 767-772.

A new approach to Santaló's inequality on n is obtained by combining complex interpolation and Berndtsson's generalization of Prékopa's inequality.

On donne une nouvelle approche de l'inégalité de Santaló en combinant l'interpolation complexe et la généralisation de l'inégalité de Prékopa obtenue par Berntdsson.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02328-2

Dario Cordero-Erausquin 1

1 Laboratoire d'analyse et de mathématiques appliquées (CNRS UMR 8050), Université de Marne la Vallée, 77454 Marne la Vallée cedex 2, France
@article{CRMATH_2002__334_9_767_0,
     author = {Dario Cordero-Erausquin},
     title = {Santal\'o's inequality on $ \mathbb{C}^{n}$ by complex interpolation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {767--772},
     publisher = {Elsevier},
     volume = {334},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02328-2},
     language = {en},
}
TY  - JOUR
AU  - Dario Cordero-Erausquin
TI  - Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 767
EP  - 772
VL  - 334
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02328-2
LA  - en
ID  - CRMATH_2002__334_9_767_0
ER  - 
%0 Journal Article
%A Dario Cordero-Erausquin
%T Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation
%J Comptes Rendus. Mathématique
%D 2002
%P 767-772
%V 334
%N 9
%I Elsevier
%R 10.1016/S1631-073X(02)02328-2
%G en
%F CRMATH_2002__334_9_767_0
Dario Cordero-Erausquin. Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 767-772. doi : 10.1016/S1631-073X(02)02328-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02328-2/

[1] J. Bergh; J. Löftröm Interpolation Spaces. An Introduction, Springer, Berlin, 1976

[2] B. Berndtsson Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions, Math. Ann., Volume 312 (1998), pp. 785-792

[3] L. Hörmander An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990

[4] M. Meyer; A. Pajor On the Blaschke–Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93

[5] A. Prékopa On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343

[6] L. Santaló Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugal Math., Volume 8 (1949), pp. 155-1961

Cited by Sources:

Comments - Policy