[Principe d'incertitude et paires Lp–Lq-suffisantes sur les espaces symétriques réels non-compacts]
On considère un groupe de Lie semi-simple réel G de centre fini et K un sous-groupe compact maximal de G. Soit une décomposition de Cartan de G. Pour x∈G, on note ∥x∥ la norme de la composante de x dans . Soient et 1⩽p,q⩽∞. Dans cette Note on donne une condition nécessaire et suffisante sur telle que pour toute fonction f mesurable et K-bi-invariante sur G, si ea∥x∥2f∈Lp(G) et alors f=0 presque partout.
We consider a real semi-simple Lie group G with finite center and a maximal compact sub-group K of G. Let be a Cartan decomposition of G. For x∈G denote ∥x∥ the norm of the -component of x in the Cartan decomposition of G. Let and 1⩽p,q⩽∞. In this Note we give necessary and sufficient conditions on such that for all K-bi-invariant measurable function f on G, if ea∥x∥2f∈Lp(G) and then f=0 almost everywhere.
Accepté le :
Publié le :
Slaim Ben Farah 1 ; Kamel Mokni 1
@article{CRMATH_2003__336_11_889_0, author = {Slaim Ben Farah and Kamel Mokni}, title = {Uncertainty principle and {\protect\emph{L}\protect\textsuperscript{\protect\emph{p}}{\textendash}\protect\emph{L}\protect\textsuperscript{\protect\emph{q}}-sufficient} pairs on noncompact real symmetric spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {889--892}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00220-6}, language = {en}, }
TY - JOUR AU - Slaim Ben Farah AU - Kamel Mokni TI - Uncertainty principle and Lp–Lq-sufficient pairs on noncompact real symmetric spaces JO - Comptes Rendus. Mathématique PY - 2003 SP - 889 EP - 892 VL - 336 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(03)00220-6 LA - en ID - CRMATH_2003__336_11_889_0 ER -
Slaim Ben Farah; Kamel Mokni. Uncertainty principle and Lp–Lq-sufficient pairs on noncompact real symmetric spaces. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 889-892. doi : 10.1016/S1631-073X(03)00220-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00220-6/
[1] Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J., Volume 65 (1992) no. 2, pp. 257-297
[2] Comportement exact du noyau de la chaleur et de la fonction de Green sur les espaces symétriques non compacts, C. R. Acad. Sci. Paris, Sér. I, Volume 362 (1998), pp. 153-156
[3] Uncertainty principles like Hardy's theorem on some Lie groups, J. Austral. Math. Soc. Ser. A, Volume 65 (1999), pp. 289-302
[4] S. Ben Farah, K. Mokni, K. Trimèche, An Lp–Lq version of Hardy's theorem for spherical Fourier transform on semi-simple Lie groups, Preprint, 2002
[5] Generalizations of Heisenberg's inequality, Lecture Notes in Math., 992, Springer, Berlin, 1983, pp. 443-449
[6] Hardy's uncertainty principle on semi-simple groups, Pacific J. Math., Volume 192 (2000) no. 2, pp. 293-296
[7] An Lp version of the Hardy theorem for motion groups, J. Austral. Math. Soc. Ser. A, Volume 68 (2000), pp. 55-67
[8] Un analogue d'un théorème de Hardy pour la transformation de Dunkl, C. R. Acad. Sci. Paris, Sér. I, Volume 334 (2002), pp. 849-854
[9] A theorem concerning Fourier transforms, J. London Math. Soc., Volume 8 (1933), pp. 227-231
[10] The Uncertainty Principle in Harmonic Analysis, A Series of Modern Surveys in Math., 28, Springer-Verlag, Berlin, 1994
[11] Groups and Geometric Analysis, Integral Geometry, Invariant Differential Operators and Spherical Functions, Academic Press, New York, 1984
[12] Lp version of Hardy's theorem on semi-simple Lie groups, Proc. Amer. Math. Soc., Volume 130 (2002) no. 6, pp. 1859-1866
[13] An analogue of Hardy's theorem for semi-simple Lie groups, Proc. Amer. Math. Soc., Volume 128 (2000) no. 8, pp. 2493-2499
[14] An analogue of Hardy's theorem for very rapidly decreasing functions on semi-simple Lie groups, Pacific J. Math., Volume 177 (1997), pp. 187-200
[15] Hardy's theorem for the n-dimensional Euclidean motion group, Proc. Amer. Math. Soc.126 (1998), pp. 1199-1204
Cité par Sources :
Commentaires - Politique