[Principe d'incertitude et paires Lp–Lq-suffisantes sur les espaces symétriques réels non-compacts]
We consider a real semi-simple Lie group G with finite center and a maximal compact sub-group K of G. Let
On considère un groupe de Lie semi-simple réel G de centre fini et K un sous-groupe compact maximal de G. Soit
Accepté le :
Publié le :
Slaim Ben Farah 1 ; Kamel Mokni 1
@article{CRMATH_2003__336_11_889_0, author = {Slaim Ben Farah and Kamel Mokni}, title = {Uncertainty principle and {\protect\emph{L}\protect\textsuperscript{\protect\emph{p}}{\textendash}\protect\emph{L}\protect\textsuperscript{\protect\emph{q}}-sufficient} pairs on noncompact real symmetric spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {889--892}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00220-6}, language = {en}, }
TY - JOUR AU - Slaim Ben Farah AU - Kamel Mokni TI - Uncertainty principle and Lp–Lq-sufficient pairs on noncompact real symmetric spaces JO - Comptes Rendus. Mathématique PY - 2003 SP - 889 EP - 892 VL - 336 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(03)00220-6 LA - en ID - CRMATH_2003__336_11_889_0 ER -
Slaim Ben Farah; Kamel Mokni. Uncertainty principle and Lp–Lq-sufficient pairs on noncompact real symmetric spaces. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 889-892. doi : 10.1016/S1631-073X(03)00220-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00220-6/
[1] Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J., Volume 65 (1992) no. 2, pp. 257-297
[2] Comportement exact du noyau de la chaleur et de la fonction de Green sur les espaces symétriques non compacts, C. R. Acad. Sci. Paris, Sér. I, Volume 362 (1998), pp. 153-156
[3] Uncertainty principles like Hardy's theorem on some Lie groups, J. Austral. Math. Soc. Ser. A, Volume 65 (1999), pp. 289-302
[4] S. Ben Farah, K. Mokni, K. Trimèche, An Lp–Lq version of Hardy's theorem for spherical Fourier transform on semi-simple Lie groups, Preprint, 2002
[5] Generalizations of Heisenberg's inequality, Lecture Notes in Math., 992, Springer, Berlin, 1983, pp. 443-449
[6] Hardy's uncertainty principle on semi-simple groups, Pacific J. Math., Volume 192 (2000) no. 2, pp. 293-296
[7] An Lp version of the Hardy theorem for motion groups, J. Austral. Math. Soc. Ser. A, Volume 68 (2000), pp. 55-67
[8] Un analogue d'un théorème de Hardy pour la transformation de Dunkl, C. R. Acad. Sci. Paris, Sér. I, Volume 334 (2002), pp. 849-854
[9] A theorem concerning Fourier transforms, J. London Math. Soc., Volume 8 (1933), pp. 227-231
[10] The Uncertainty Principle in Harmonic Analysis, A Series of Modern Surveys in Math., 28, Springer-Verlag, Berlin, 1994
[11] Groups and Geometric Analysis, Integral Geometry, Invariant Differential Operators and Spherical Functions, Academic Press, New York, 1984
[12] Lp version of Hardy's theorem on semi-simple Lie groups, Proc. Amer. Math. Soc., Volume 130 (2002) no. 6, pp. 1859-1866
[13] An analogue of Hardy's theorem for semi-simple Lie groups, Proc. Amer. Math. Soc., Volume 128 (2000) no. 8, pp. 2493-2499
[14] An analogue of Hardy's theorem for very rapidly decreasing functions on semi-simple Lie groups, Pacific J. Math., Volume 177 (1997), pp. 187-200
[15] Hardy's theorem for the n-dimensional Euclidean motion group, Proc. Amer. Math. Soc.126 (1998), pp. 1199-1204
- Qualitative uncertainty principles for the generalized Fourier transform associated to a Dunkl type operator on the real line, Analysis and Mathematical Physics, Volume 6 (2016) no. 2, pp. 141-162 | DOI:10.1007/s13324-015-0111-7 | Zbl:1352.43006
- Uncertainty principle and (Lp,Lq)sufficient pairs on Chébli–Trimèche hypergroups, Integral Transforms and Special Functions, Volume 16 (2005) no. 8, p. 625 | DOI:10.1080/10652460500110404
Cité par 2 documents. Sources : Crossref, zbMATH
Commentaires - Politique