Comptes Rendus
Théorèmes ergodiques maximaux dans les espaces L 𝐩 non commutatifs
Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 773-778.

On obtient certains théorèmes ergodiques maximaux dans les espaces Lp non commutatifs associés à une algèbre de von Neumann semifinie.

We prove several maximal ergodic theorems in non-commutative Lp-spaces associated with semifinite von Neumann algebras.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02367-1

Marius Junge 1 ; Quanhua Xu 2

1 Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
2 Laboratoire de mathématiques, Université de Franche-Comté, 25030 Besançon cedex, France
@article{CRMATH_2002__334_9_773_0,
     author = {Marius Junge and Quanhua Xu},
     title = {Th\'eor\`emes ergodiques maximaux dans les espaces $ \mathrm{L}_{\mathbf{p}}$ non commutatifs},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {773--778},
     publisher = {Elsevier},
     volume = {334},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02367-1},
     language = {fr},
}
TY  - JOUR
AU  - Marius Junge
AU  - Quanhua Xu
TI  - Théorèmes ergodiques maximaux dans les espaces $ \mathrm{L}_{\mathbf{p}}$ non commutatifs
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 773
EP  - 778
VL  - 334
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02367-1
LA  - fr
ID  - CRMATH_2002__334_9_773_0
ER  - 
%0 Journal Article
%A Marius Junge
%A Quanhua Xu
%T Théorèmes ergodiques maximaux dans les espaces $ \mathrm{L}_{\mathbf{p}}$ non commutatifs
%J Comptes Rendus. Mathématique
%D 2002
%P 773-778
%V 334
%N 9
%I Elsevier
%R 10.1016/S1631-073X(02)02367-1
%G fr
%F CRMATH_2002__334_9_773_0
Marius Junge; Quanhua Xu. Théorèmes ergodiques maximaux dans les espaces $ \mathrm{L}_{\mathbf{p}}$ non commutatifs. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 773-778. doi : 10.1016/S1631-073X(02)02367-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02367-1/

[1] M. Bożejko Ultracontractivity and strong Sobolev inequality for q-Ornstein–Uhlenbeck semigroup (−1<q<1), Infinite Dimensional Anal., Quantum Probab. Related Topics, Volume 2 (1999), pp. 203-220

[2] M. Bożejko; B. Kümmerer; R. Speicher q-Gaussian processes: Non-commutative and classical aspects, Comm. Math. Phys., Volume 185 (1997), pp. 129-154

[3] J.P. Conze; N. Dang-Ngoc Ergodic theorems for noncommutative dynamical systems, Invent. Math., Volume 46 (1978), pp. 1-15

[4] I. Cuculescu Martingales on von Neumann algebras, J. Multivariate. Anal., Volume 1 (1971), pp. 17-27

[5] R. Jajte Strong Limit Theorems on Non-Commutative Probability, Lecture Notes in Math., 1110, Springer, 1985

[6] M. Junge, Doob's inequality for non-commutative martingales, J. Reine Angew. Math., to appear

[7] M. Junge, Q. Xu, The optimal orders of growth of the best constants in some non-commutative martingale inequalities, en préparation

[8] B. Kümmerer A non-commutative individual ergodic theorem, Invent. Math., Volume 46 (1978), pp. 139-145

[9] E.C. Lance Ergodic theorems for convex sets and operator algebras, Invent. Math., Volume 37 (1976), pp. 201-214

[10] G. Pisier Non-commutative vector valued Lp-spaces and completely p-summing maps, Astérisque, Volume 247 (1998)

[11] E.M. Stein On the maximal ergodic theorem, Proc. Nat. Acad. Sci., Volume 47 (1961), pp. 1894-1897

[12] E.M. Stein Topics in harmonic analysis related to the Littlewood–Paley theory, Ann. Math. Studies, Princeton University Press, 1985

[13] F.J. Yeadon Ergodic theorems for semifinite von Neumann algebras. I, J. London Math. Soc., Volume 16 (1977), pp. 326-332

Cité par Sources :

Commentaires - Politique