[Volume de l'intersection d'un cube et de sous-espaces aleatoires]
Nous calculons la cardinalité typique de l'intersection du cube discret {−1,1}N et de M demi-espaces aleatoires, quand M est une petite proportion de N.
We compute the typical number of points of the discrete cube {−1,1}N that belong to the intersection of M random half-spaces, when M is a small proportion of N.
Accepté le :
Publié le :
Michel Talagrand 1
@article{CRMATH_2002__334_9_807_0, author = {Michel Talagrand}, title = {Intersecting random half spaces with a cube}, journal = {Comptes Rendus. Math\'ematique}, pages = {807--809}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02368-3}, language = {en}, }
Michel Talagrand. Intersecting random half spaces with a cube. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 807-809. doi : 10.1016/S1631-073X(02)02368-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02368-3/
[1] Hopfield models as generalized mean field models (A. Bovier; P. Picco, eds.), Mathematical Aspects of Spin Glasses and Neural Networks, Progress Probab., 41, Birkhäuser, 1998, pp. 3-89
[2] The space of interactions in neural networks models, J. Phys. A, Volume 21 (1988), pp. 271-284
[3] M. Shcherbina, B. Tirrozi, Rigorous solution to the Gardner problem, to appear
[4] On the volume to the intersection of the sphere with random half-spaces, C. R. Acad. Sci. Paris, Série I, Volume 334 (2002), pp. 803-806
[5] Intersecting random half spaces: towards the Gardner–Derrida formula, Ann. Probab., Volume 28 (2000), pp. 725-758
[6] M. Talagrand, On the Gaussian perceptron at high temperature, Anal. Geom. Math. Phys., to appear
[7] M. Talagrand, Spin Glasses: A Challenge to Mathematicians, to appear in the Ergebnisse Series, Springer-Verlag
Cité par Sources :
Commentaires - Politique