On considère des équations de la forme
We consider partial differential equations of the form
Accepté le :
Publié le :
Françoise Demengel 1
@article{CRMATH_2002__334_12_1071_0, author = {Fran\c{c}oise Demengel}, title = {Th\'eor\`emes d'existence pour des \'equations avec l'op\'erateur {\guillemotleft} {1-Laplacien} {\guillemotright}, premi\`ere valeur propre pour {\ensuremath{-}\protect\emph{\ensuremath{\Delta}}\protect\textsubscript{1}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1071--1076}, publisher = {Elsevier}, volume = {334}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02405-6}, language = {fr}, }
TY - JOUR AU - Françoise Demengel TI - Théorèmes d'existence pour des équations avec l'opérateur « 1-Laplacien », première valeur propre pour −Δ1 JO - Comptes Rendus. Mathématique PY - 2002 SP - 1071 EP - 1076 VL - 334 IS - 12 PB - Elsevier DO - 10.1016/S1631-073X(02)02405-6 LA - fr ID - CRMATH_2002__334_12_1071_0 ER -
Françoise Demengel. Théorèmes d'existence pour des équations avec l'opérateur « 1-Laplacien », première valeur propre pour −Δ1. Comptes Rendus. Mathématique, Volume 334 (2002) no. 12, pp. 1071-1076. doi : 10.1016/S1631-073X(02)02405-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02405-6/
[1] On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. and Partial Differential Equations, Volume 1 (1993), pp. 439-475
[2] Problémes elliptiques indéfinis et théorème de Liouville non-linéaires, C. R. Acad. Sci. Paris, Série I, Volume 317 (1993), pp. 945-950
[3] I. Birindelli, F. Demengel, On some partial differential equation for noncoercive functional and critical Sobolev exponent, Adv. in Differential Equations, accepted
[4] I. Birindelli, F. Demengel, On some partial differential equation for non coercive functional and critical Sobolev exponent, Preprint, Universita di Roma La Sapienza
[5] On some nonlinear partial differential equations involving the 1-Laplacian and critical Sobolev exponent, Control Optim. Calc. Var., Mars 2000
[6] F. Demengel, Some existence's results for noncoercive 1-Laplacian operator, Prébublication de l'Université de Cergy-Pontoise, No. 21, 2001, soumis à Nonlinear Anal
[7] F. Demengel, Functions almost 1-harmonic, Prépublication de l'Université de Cergy Pontoise. No. 31, 2001
[8] La méthode de compacité concentration, I et II, Rev. Mat. Iberoamericana, Volume 1 (1985) no. 1, p. 145
[9] On the positive solutions of semilinear equations of Δu+λu+hup=0 on compacts manifolds, II, Indiana Math. J., Volume 40 (1991), pp. 1083-1140
- Weighted total variation minimization problem with mixed Dirichlet–Neumann boundary conditions, Pacific Journal of Mathematics, Volume 335 (2025) no. 1, p. 53 | DOI:10.2140/pjm.2025.335.53
- On Some Weighted 1-Laplacian Problem on
with Singular Behavior at the Origin, Bulletin of the Malaysian Mathematical Sciences Society, Volume 47 (2024) no. 1 | DOI:10.1007/s40840-023-01622-y - Higher Robin eigenvalues for the p-Laplacian operator as p approaches 1, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 7 | DOI:10.1007/s00526-024-02769-7
- Asymptotic Behavior Related to Cheeger Constant for Solutions of an Exponentially Growth Equation, Results in Mathematics, Volume 79 (2024) no. 1 | DOI:10.1007/s00025-023-02077-0
- Existence and concentration behavior of solutions to 1-Laplace equations on RN, Journal of Differential Equations, Volume 272 (2021), p. 399 | DOI:10.1016/j.jde.2020.09.041
- On a quasilinear elliptic problem involving the 1-biharmonic operator and a Strauss type compactness result, ESAIM: Control, Optimisation and Calculus of Variations, Volume 26 (2020), p. 86 | DOI:10.1051/cocv/2020011
- Elliptic equations involving the 1-Laplacian and a subcritical source term, Nonlinear Analysis, Volume 168 (2018), p. 50 | DOI:10.1016/j.na.2017.11.006
- A Neumann problem for the p(x)-Laplacian with p= 1 in a subdomain, Journal of Mathematical Analysis and Applications, Volume 454 (2017) no. 1, p. 412 | DOI:10.1016/j.jmaa.2017.05.004
- Asymptotic behavior of the p-torsion functions as p goes to 1, Archiv der Mathematik, Volume 107 (2016) no. 1, p. 63 | DOI:10.1007/s00013-016-0922-2
- BV supersolutions to equations of 1-Laplace and minimal surface type, Journal of Differential Equations, Volume 261 (2016) no. 3, p. 1904 | DOI:10.1016/j.jde.2016.04.015
- Dimension reduction for −Δ1, ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 1, p. 42 | DOI:10.1051/cocv/2013053
- Discontinuous velocity domain splitting in limit analysis, International Journal of Solids and Structures, Volume 47 (2010) no. 10, p. 1459 | DOI:10.1016/j.ijsolstr.2010.02.012
- THE SPECTRUM OF THE 1-LAPLACE OPERATOR, Communications in Contemporary Mathematics, Volume 11 (2009) no. 05, p. 865 | DOI:10.1142/s0219199709003570
- Approximation of maximal Cheeger sets by projection, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 43 (2009) no. 1, p. 139 | DOI:10.1051/m2an/2008040
- A class of total variation minimization problems on the whole space, Nonlinear Analysis: Theory, Methods Applications, Volume 70 (2009) no. 6, p. 2356 | DOI:10.1016/j.na.2008.03.022
- On some nonlinear partial differential equations involving the 1-Laplacian, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 16 (2008) no. 4, p. 905 | DOI:10.5802/afst.1170
- On a weighted total variation minimization problem, Journal of Functional Analysis, Volume 250 (2007) no. 1, p. 214 | DOI:10.1016/j.jfa.2007.05.022
- Generalized Cheeger sets related to landslides, Calculus of Variations and Partial Differential Equations, Volume 23 (2005) no. 2, p. 227 | DOI:10.1007/s00526-004-0300-y
Cité par 18 documents. Sources : Crossref
Commentaires - Politique