[Γ-convergence des fonctionelles non linéaires dans des structures réticulées de faible épaisseur]
On étudie la Γ-convergence de fonctionelles non linéaires considérées dans des structures non périodiques de type de grille dans l'espace
We study the Γ-convergence of nonlinear functionals considered in nonperiodic 2D lattice-like structures. The Γ-limit functional is obtained in the explicit form.
Accepté le :
Publié le :
Leonid Pankratov 1
@article{CRMATH_2002__335_3_315_0, author = {Leonid Pankratov}, title = {\protect\emph{\ensuremath{\Gamma}}-convergence of nonlinear functionals in thin reticulated structures}, journal = {Comptes Rendus. Math\'ematique}, pages = {315--320}, publisher = {Elsevier}, volume = {335}, number = {3}, year = {2002}, doi = {10.1016/S1631-073X(02)02468-8}, language = {en}, }
Leonid Pankratov. Γ-convergence of nonlinear functionals in thin reticulated structures. Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 315-320. doi : 10.1016/S1631-073X(02)02468-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02468-8/
[1] Homogenization: Averaging Processes in Periodic Media, Kluwer Academic, Dordrecht, 1989
[2] Asymptotic Analysis for Periodic Structures, Stud. Math. Appl., 5, North-Holland, Amsterdam, 1978
[3] Homogenization of Multiple Integrals, Oxford Lecture Ser. Math. Appl., 12, Clarendon Press, Oxford, 1998
[4] Homogenization of Reticulated Structures, Appl. Math. Sci., 136, Springer-Verlag, New York, 1999
[5] D. Cioranescu, M.V. Goncharenko, F. Murat, L.S. Pankratov, Homogenization of nonlinear variational problems in domains of degenerating measure, prepared for publication
[6] An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993
[7] Homogenization of the Dirichlet variational problems in Orlicz–Sobolev spaces, Oper. Theory Appl., Fields Inst. Commun., 25, American Mathematical Society, Providence, RI, 2000, pp. 345-366
[8] Conditions of the Γ-convergence and homogenization of integral functionals with different domains of the definition, Dokl. Akad. Nauk Ukrainy, Volume 4 (1991), pp. 5-8 (in Russian)
[9] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1973
[10] L.S. Pankratov, On convergence of the solutions of variational problems in weakly connected domains, Preprint 53-88, Institute for Low Temperature Physics and Engineering, Kharkov, 1988 (in Russian)
[11] Nonhomogeneous Media and Vibration Theory, Lecture Notes in Phys., 127, Springer-Verlag, New York, 1980
[12] Asymptotic behavior of the solutions of the second boundary value problem in domains of decreasing volume, Operator Theory and Subharmonic Functions, Naukova Dumka, Kiev, 1991, pp. 126-134 (in Russian)
[13] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New York, 1994
- Approximation in
-norms of solutions of minimum problems with bilateral constraints in variable domains, Bollettino dell'Unione Matematica Italiana (2025) | DOI:10.1007/s40574-025-00467-6 - Convergence of solutions of variational problems with measurable bilateral constraints in variable domains, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 201 (2022) no. 2, pp. 835-859 | DOI:10.1007/s10231-021-01140-3 | Zbl:1485.49017
- On the convergence of solutions of variational problems with pointwise functional constraints in variable domains, Journal of Mathematical Sciences (New York), Volume 254 (2021) no. 3, pp. 375-396 | DOI:10.1007/s10958-021-05310-9 | Zbl:1465.49012
- On the convergence of solutions of variational problems with pointwise functional constraints in variable domains, Ukrainian Mathematical Bulletin, Volume 17 (2020) no. 4, p. 509 | DOI:10.37069/1810-3200-2020-17-4-3
- Variational problems with variable regular bilateral constraints in variable domains, Revista Matemática Complutense, Volume 32 (2019) no. 2, pp. 327-351 | DOI:10.1007/s13163-018-0281-6 | Zbl:1419.49015
- Variational problems with unilateral pointwise functional constraints in variable domains, Proceedings of the Steklov Institute of Mathematics, Volume 301 (2018), p. s115-s131 | DOI:10.1134/s0081543818050097 | Zbl:1401.49029
- Three-scale convergence for processes in heterogeneous media, Applicable Analysis, Volume 91 (2012) no. 7, pp. 1351-1373 | DOI:10.1080/00036811.2011.569498 | Zbl:1252.35038
- On Γ-convergence of integral functionals defined on various weighted Sobolev spaces, Ukrainian Mathematical Journal, Volume 61 (2009) no. 1, p. 121 | DOI:10.1007/s11253-009-0193-1
-
-convergence for a class of quasilinear elliptic equations in thin structures, Mathematical Methods in the Applied Sciences, Volume 28 (2005) no. 15, pp. 1847-1865 | DOI:10.1002/mma.644 | Zbl:1185.35012
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique