Comptes Rendus
Γ-convergence of nonlinear functionals in thin reticulated structures
Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 315-320.

We study the Γ-convergence of nonlinear functionals considered in nonperiodic 2D lattice-like structures. The Γ-limit functional is obtained in the explicit form.

On étudie la Γ-convergence de fonctionelles non linéaires considérées dans des structures non périodiques de type de grille dans l'espace R 2 . La fonctionelle Γ-limite est obtenue sous forme explicite.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02468-8

Leonid Pankratov 1

1 Département de mathématiques, Institut des Basses Températures (FTINT), 47, av. Lénine, 61164 Kharkov, Ukraine
@article{CRMATH_2002__335_3_315_0,
     author = {Leonid Pankratov},
     title = {\protect\emph{\ensuremath{\Gamma}}-convergence of nonlinear functionals in thin reticulated structures},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {315--320},
     publisher = {Elsevier},
     volume = {335},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02468-8},
     language = {en},
}
TY  - JOUR
AU  - Leonid Pankratov
TI  - Γ-convergence of nonlinear functionals in thin reticulated structures
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 315
EP  - 320
VL  - 335
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02468-8
LA  - en
ID  - CRMATH_2002__335_3_315_0
ER  - 
%0 Journal Article
%A Leonid Pankratov
%T Γ-convergence of nonlinear functionals in thin reticulated structures
%J Comptes Rendus. Mathématique
%D 2002
%P 315-320
%V 335
%N 3
%I Elsevier
%R 10.1016/S1631-073X(02)02468-8
%G en
%F CRMATH_2002__335_3_315_0
Leonid Pankratov. Γ-convergence of nonlinear functionals in thin reticulated structures. Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 315-320. doi : 10.1016/S1631-073X(02)02468-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02468-8/

[1] N.S. Bakhvalov; G.P. Panasenko Homogenization: Averaging Processes in Periodic Media, Kluwer Academic, Dordrecht, 1989

[2] A. Bensoussan; J.-L. Lions; G. Papanicolau Asymptotic Analysis for Periodic Structures, Stud. Math. Appl., 5, North-Holland, Amsterdam, 1978

[3] A. Braides; A. Defranceschi Homogenization of Multiple Integrals, Oxford Lecture Ser. Math. Appl., 12, Clarendon Press, Oxford, 1998

[4] D. Cioranescu; J. Saint Jean Paulin Homogenization of Reticulated Structures, Appl. Math. Sci., 136, Springer-Verlag, New York, 1999

[5] D. Cioranescu, M.V. Goncharenko, F. Murat, L.S. Pankratov, Homogenization of nonlinear variational problems in domains of degenerating measure, prepared for publication

[6] G. Dal Maso An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993

[7] E. Ya Khruslov; L.S. Pankratov Homogenization of the Dirichlet variational problems in Orlicz–Sobolev spaces, Oper. Theory Appl., Fields Inst. Commun., 25, American Mathematical Society, Providence, RI, 2000, pp. 345-366

[8] A.A. Kovalevskij Conditions of the Γ-convergence and homogenization of integral functionals with different domains of the definition, Dokl. Akad. Nauk Ukrainy, Volume 4 (1991), pp. 5-8 (in Russian)

[9] O.A. Ladyzhenskaya; N.N. Ural'tseva Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1973

[10] L.S. Pankratov, On convergence of the solutions of variational problems in weakly connected domains, Preprint 53-88, Institute for Low Temperature Physics and Engineering, Kharkov, 1988 (in Russian)

[11] É. Sanchez-Palencia Nonhomogeneous Media and Vibration Theory, Lecture Notes in Phys., 127, Springer-Verlag, New York, 1980

[12] E.V. Svischeva Asymptotic behavior of the solutions of the second boundary value problem in domains of decreasing volume, Operator Theory and Subharmonic Functions, Naukova Dumka, Kiev, 1991, pp. 126-134 (in Russian)

[13] V.V. Zhikov; S.M. Kozlov; O.A. Oleinik Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New York, 1994

Cited by Sources:

Comments - Policy