[Une condition de transmission non locale dans l'homogénéisation du
On étudie le comportement asymptotique, lorsque
We study the asymptotic behavior, as
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides, Homogénéisation, Problème variationnel non linéaire, Croissance non standard
Brahim Amaziane 1 ; Leonid Pankratov 1, 2 ; Vladyslav Prytula 3
@article{CRMECA_2009__337_3_173_0, author = {Brahim Amaziane and Leonid Pankratov and Vladyslav Prytula}, title = {Homogenization of $ {p}_{\epsilon }(x)${-Laplacian} in perforated domains with a nonlocal transmission condition}, journal = {Comptes Rendus. M\'ecanique}, pages = {173--178}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2009}, doi = {10.1016/j.crme.2009.03.011}, language = {en}, }
TY - JOUR AU - Brahim Amaziane AU - Leonid Pankratov AU - Vladyslav Prytula TI - Homogenization of $ {p}_{\epsilon }(x)$-Laplacian in perforated domains with a nonlocal transmission condition JO - Comptes Rendus. Mécanique PY - 2009 SP - 173 EP - 178 VL - 337 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2009.03.011 LA - en ID - CRMECA_2009__337_3_173_0 ER -
%0 Journal Article %A Brahim Amaziane %A Leonid Pankratov %A Vladyslav Prytula %T Homogenization of $ {p}_{\epsilon }(x)$-Laplacian in perforated domains with a nonlocal transmission condition %J Comptes Rendus. Mécanique %D 2009 %P 173-178 %V 337 %N 3 %I Elsevier %R 10.1016/j.crme.2009.03.011 %G en %F CRMECA_2009__337_3_173_0
Brahim Amaziane; Leonid Pankratov; Vladyslav Prytula. Homogenization of $ {p}_{\epsilon }(x)$-Laplacian in perforated domains with a nonlocal transmission condition. Comptes Rendus. Mécanique, Volume 337 (2009) no. 3, pp. 173-178. doi : 10.1016/j.crme.2009.03.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.011/
[1] On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara, Sez., Sci. Mat., Volume 52 (2006), pp. 19-36
[2] Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000
[3] Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions (M. Chipot; P. Quittner, eds.), Handbook of Differential Equations: Stationary Partial Differential Equations, Elsevier, Amsterdam, 2006, pp. 1-100
[4] Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, J. Math. Sci., Volume 150 (2008), pp. 2289-2301
[5] Γ-convergence and homogenization of functionals on Sobolev spaces with variable exponents, J. Math. Anal. Appl., Volume 342 (2008), pp. 1192-1202
[6] Homogenization of a class of nonlinear elliptic equations with nonstandard growth, C. R. Mécanique, Volume 335 (2007), pp. 138-143
[7] Homogenization of the electrostatic problems in nonlinear medium with thin perfectly conducting grids, J. Math. Phys. Anal. Geom., Volume 2 (2006), pp. 424-448
[8] Homogenization of the Dirichlet variational problems in Orlicz–Sobolev spaces, Fields Inst. Commun., Volume 25 (2000), pp. 345-366
[9] Homogenization of Partial Differential Equations, Birkhäuser, Berlin, 2006
[10] Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Cl. Sci. IV, Volume 26 (1998), pp. 407-436
[11] Two-dimensional div-curl results. Application to the lack of nonlocal effects in homogenization, Comm. Partial Differential Equations, Volume 32 (2007), pp. 935-969
[12] Homogenization of Maxwell's equations in domains with dense perfectly conducting grids, Ukrainskii Matematicheskii Vestnik, Volume 2 (2005), pp. 119-151
[13] Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications, vol. 12, Clarendon Press, Oxford, 1998
[14] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994
- Unfolding homogenization in doubly periodic media and applications, Applicable Analysis, Volume 96 (2017) no. 13, p. 2218 | DOI:10.1080/00036811.2016.1209744
- A Takeuchi-Yamada type equation with variable exponents, Boletim da Sociedade Paranaense de Matemática, Volume 35 (2017) no. 3, p. 241 | DOI:10.5269/bspm.v35i3.29882
- Homogenization in Sobolev Spaces with Nonstandard Growth: Brief Review of Methods and Applications, International Journal of Differential Equations, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/693529
- Continuity of the flows and upper semicontinuity of global attractors forps(x)-Laplacian parabolic problems, Journal of Mathematical Analysis and Applications, Volume 398 (2013) no. 1, p. 138 | DOI:10.1016/j.jmaa.2012.08.047
- Homogenization of p-Laplacian in perforated domain, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 6, p. 2457 | DOI:10.1016/j.anihpc.2009.06.004
Cité par 5 documents. Sources : Crossref
Commentaires - Politique