[Une condition de transmission non locale dans l'homogénéisation du -Laplacian dans des domaines perforés]
On étudie le comportement asymptotique, lorsque , des solutions d'une équation elliptique non linéaire de croissance non standard dans des domains qui contiennent une microstructure ayant la forme d'une grille. Cette microstructure est concentrée dans un petit voisinage arbitraire d'une hypersurface Γ. On suppose que sur , où est une constante inconnue. L'équation macroscopique et une condition de transmission non locale sur Γ sont obtenues par la technique de l'homogénéisation variationnelle dans le cadre des espaces de Sobolev avec des exposants variables. On présente un exemple périodique pour illustrer le résultat obtenu.
We study the asymptotic behavior, as , of solutions to a nonlinear elliptic equation with nonstandard growth condition in domains containing a grid-type microstructure that is concentrated in an arbitrary small neighborhood of a given hypersurface Γ. We assume that on , where is an unknown constant. The macroscopic equation and a nonlocal transmission condition on Γ are obtained by the variational homogenization technique in the framework of Sobolev spaces with variables exponents. This result is then illustrated by a periodic example.
Accepté le :
Publié le :
Mot clés : Mécanique des fluides, Homogénéisation, Problème variationnel non linéaire, Croissance non standard
Brahim Amaziane 1 ; Leonid Pankratov 1, 2 ; Vladyslav Prytula 3
@article{CRMECA_2009__337_3_173_0, author = {Brahim Amaziane and Leonid Pankratov and Vladyslav Prytula}, title = {Homogenization of $ {p}_{\epsilon }(x)${-Laplacian} in perforated domains with a nonlocal transmission condition}, journal = {Comptes Rendus. M\'ecanique}, pages = {173--178}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2009}, doi = {10.1016/j.crme.2009.03.011}, language = {en}, }
TY - JOUR AU - Brahim Amaziane AU - Leonid Pankratov AU - Vladyslav Prytula TI - Homogenization of $ {p}_{\epsilon }(x)$-Laplacian in perforated domains with a nonlocal transmission condition JO - Comptes Rendus. Mécanique PY - 2009 SP - 173 EP - 178 VL - 337 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2009.03.011 LA - en ID - CRMECA_2009__337_3_173_0 ER -
%0 Journal Article %A Brahim Amaziane %A Leonid Pankratov %A Vladyslav Prytula %T Homogenization of $ {p}_{\epsilon }(x)$-Laplacian in perforated domains with a nonlocal transmission condition %J Comptes Rendus. Mécanique %D 2009 %P 173-178 %V 337 %N 3 %I Elsevier %R 10.1016/j.crme.2009.03.011 %G en %F CRMECA_2009__337_3_173_0
Brahim Amaziane; Leonid Pankratov; Vladyslav Prytula. Homogenization of $ {p}_{\epsilon }(x)$-Laplacian in perforated domains with a nonlocal transmission condition. Comptes Rendus. Mécanique, Volume 337 (2009) no. 3, pp. 173-178. doi : 10.1016/j.crme.2009.03.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.011/
[1] On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara, Sez., Sci. Mat., Volume 52 (2006), pp. 19-36
[2] Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000
[3] Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions (M. Chipot; P. Quittner, eds.), Handbook of Differential Equations: Stationary Partial Differential Equations, Elsevier, Amsterdam, 2006, pp. 1-100
[4] Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, J. Math. Sci., Volume 150 (2008), pp. 2289-2301
[5] Γ-convergence and homogenization of functionals on Sobolev spaces with variable exponents, J. Math. Anal. Appl., Volume 342 (2008), pp. 1192-1202
[6] Homogenization of a class of nonlinear elliptic equations with nonstandard growth, C. R. Mécanique, Volume 335 (2007), pp. 138-143
[7] Homogenization of the electrostatic problems in nonlinear medium with thin perfectly conducting grids, J. Math. Phys. Anal. Geom., Volume 2 (2006), pp. 424-448
[8] Homogenization of the Dirichlet variational problems in Orlicz–Sobolev spaces, Fields Inst. Commun., Volume 25 (2000), pp. 345-366
[9] Homogenization of Partial Differential Equations, Birkhäuser, Berlin, 2006
[10] Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Cl. Sci. IV, Volume 26 (1998), pp. 407-436
[11] Two-dimensional div-curl results. Application to the lack of nonlocal effects in homogenization, Comm. Partial Differential Equations, Volume 32 (2007), pp. 935-969
[12] Homogenization of Maxwell's equations in domains with dense perfectly conducting grids, Ukrainskii Matematicheskii Vestnik, Volume 2 (2005), pp. 119-151
[13] Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications, vol. 12, Clarendon Press, Oxford, 1998
[14] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994
Cité par Sources :
Commentaires - Politique