Comptes Rendus
The tree lattice existence theorems
Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 223-228.

Let X be a locally finite tree, and let G=Aut(X). Then G is a locally compact group. In analogy with Lie groups, Bass and Lubotzky conjectured that G contains lattices, that is, discrete subgroups whose quotient carries a finite invariant measure. Bass and Kulkarni showed that G contains uniform lattices if and only if G is unimodular and GX is finite. We describe the necessary and sufficient conditions for G to contain lattices, both uniform and non-uniform, answering the Bass–Lubotzky conjectures in full.

Soit X un arbre localement fini, et soit G=Aut(X). Alors G est un groupe localement compact. Par analogie avec les groupes de Lie, Bass et Lubotzky ont conjecturé que G contient des réseaux, c'est-à-dire des sous-groupes discrets dont le quotient porte une mesure invariante finie. Bass et Kulkarni ont montré que G contient des réseaux uniformes si et seulement si G est unimodulaire et GX est fini. Nous décrivons les conditions nécessaires et suffisantes pour que G contienne des réseaux, non seulement uniformes mais aussi non-uniformes, prouvant ainsi complètement les conjectures de Bass et Lubotzky.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02474-3

Lisa Carbone 1

1 Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd, Piscataway, NJ 08854-8019, USA
@article{CRMATH_2002__335_3_223_0,
     author = {Lisa Carbone},
     title = {The tree lattice existence theorems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {223--228},
     publisher = {Elsevier},
     volume = {335},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02474-3},
     language = {en},
}
TY  - JOUR
AU  - Lisa Carbone
TI  - The tree lattice existence theorems
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 223
EP  - 228
VL  - 335
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02474-3
LA  - en
ID  - CRMATH_2002__335_3_223_0
ER  - 
%0 Journal Article
%A Lisa Carbone
%T The tree lattice existence theorems
%J Comptes Rendus. Mathématique
%D 2002
%P 223-228
%V 335
%N 3
%I Elsevier
%R 10.1016/S1631-073X(02)02474-3
%G en
%F CRMATH_2002__335_3_223_0
Lisa Carbone. The tree lattice existence theorems. Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 223-228. doi : 10.1016/S1631-073X(02)02474-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02474-3/

[1] H. Bass Covering theory for graphs of groups, J. Pure Appl. Algebra, Volume 89 (1993), pp. 3-47

[2] H. Bass; L. Carbone; G. Rosenberg The existence theorem for tree lattices, Appendix [BCR], Tree Lattices, 176, Birkhäuser, Boston, 2000 (in: H. Bass, A. Lubotzky, Progr. Math.)

[3] H. Bass; R. Kulkarni Uniform tree lattices, J. Amer. Math. Soc., Volume 3 (1990) no. 4

[4] H. Bass; A. Lubotzky Tree Lattices, Progr. Math., 176, Birkhäuser, Boston, 2000

[5] H. Bass; J. Tits A discreteness criterion for certain tree automorphism groups, Appendix [BT], Tree Lattices, 176, Birkhäuser, Boston, 2000 (in: H. Bass, A. Lubotzky, Progr. Math.)

[6] L. Carbone Non-uniform lattices on uniform trees, Mem. Amer. Math. Soc., Volume 152 (2001) no. 724

[7] L. Carbone, Non-minimal tree actions and the existence of non-uniform tree lattices, Preprint, 2002

[8] L. Carbone; D. Clark Lattices on parabolic trees, Comm. Algebra, Volume 30 (2002) no. 4

[9] L. Carbone, G. Rosenberg, Lattices on non-uniform trees, Geom. Dedicate (2002), to appear

[10] L. Carbone; G. Rosenberg Infinite towers of tree lattices, Math. Res. Lett., Volume 8 (2001), pp. 1-10

[11] L. Carbone, G. Rosenberg, Infinite towers of non-uniform tree lattices (2002), in preparation

[12] D. Kazhdan; G. Margulis A proof of Selberg's hypothesis, Mat. Sb. (N.S.), Volume 75 (1968) no. 117, pp. 163-168 (in Russian)

[13] A. Lubotzky Lattices in rank one Lie groups over local fields, Geom. Funct. Anal., Volume 1 (1991) no. 4, pp. 405-431

[14] A. Lubotzky Tree lattices and lattices in Lie groups (A. Duncan; N. Gilbert; J. Howie, eds.), Combinatorial and Geometric Group Theory, LMS Lecture Note Series, 204, Cambridge University Press, 1995, pp. 217-232

[15] G. Rosenberg, Towers and covolumes of tree lattices, Ph.D. Thesis, Columbia University, 2000

[16] J.-P. Serre Trees, Springer-Verlag, Berlin, 1980 (Translated from the French by J. Stilwell)

Cited by Sources:

Comments - Policy