Nous présentons un modèle d'expansion de plasma. Le modèle de départ est constitué des équations d'Euler isentropiques pour deux espèces (ions et électrons) couplées avec l'équation de Poisson. La simulation numérique de ce modèle s'avérant trop coûteuse dans la pratique, nous en envisageons une limite quasineutre. Nous montrons qu'à l'interface plasma–vide se produit une émission électronique, bien décrite par un modèle de type Child–Langmuir. La difficulté consiste à prendre en compte le mouvement de l'interface plasma–vide et l'émission d'électrons à partir de celle-ci. Nous justifions formellement et numériquement pourquoi l'émission électronique produit une pression de réaction qui freine l'expansion du plasma.
In this paper, we propose a model describing the expansion of a plasma in vacuum. Our starting point consists of a 2-fluid Euler system (isentropic case) coupled with the Poisson equation. Since numerical simulations of this model are very expensive, we investigate a quasi-neutral limit of it. We show that electron emission happens at the plasma–vaccum interface. This emission is well modeled by a Child–Langmuir law. The difficulty consists in accounting for the motion of the plasma–vacuum interface. In this paper, we formally and numerically justify why electron emission produces a reaction pressure which slows down the plasma expansion.
Accepté le :
Publié le :
Pierre Degond 1 ; Céline Parzani 1 ; Marie-Hélène Vignal 1
@article{CRMATH_2002__335_4_399_0, author = {Pierre Degond and C\'eline Parzani and Marie-H\'el\`ene Vignal}, title = {Un mod\`ele d'expansion de plasma dans le vide}, journal = {Comptes Rendus. Math\'ematique}, pages = {399--404}, publisher = {Elsevier}, volume = {335}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02479-2}, language = {fr}, }
Pierre Degond; Céline Parzani; Marie-Hélène Vignal. Un modèle d'expansion de plasma dans le vide. Comptes Rendus. Mathématique, Volume 335 (2002) no. 4, pp. 399-404. doi : 10.1016/S1631-073X(02)02479-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02479-2/
[1] Quasineutral limit of Euler–Poisson system arising from plasma physics, Comm. Partial Differential Equations, Volume 25 (2000) no. 5–6, pp. 1099-1113
[2] The Child–Langmuir law in the kinetic theory of charged–particles. Part 1, Electron flows in vacuum (B. Perthame, ed.), Advances in Kinetic Theory, World Scientific, Singapore, 1994, pp. 3-44
[3] Polynomial upwind schemes for hyperbolic systems, C. R. Acad. Sci. Paris, Volume 328 (1999), pp. 479-483
[4] An asymptotic analysis of the one-dimensional Vlasov–Poisson system : the Child–Langmuir law, Asymptotic Anal., Volume 4 (1991), pp. 187-214
[5] Quasineutral limit of a nonlinear drift diffusion model for semiconductors, J. Math. Anal. Appl., Volume 268 (2002), pp. 184-199
[6] Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, 1996
[7] Dynamics of a virtual cathode oscillator driven by a pinched diode, Phys. Fluids, Volume 29 (1986) no. 11, pp. 3873-3880
[8] Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 1999
Cité par Sources :
Commentaires - Politique